

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (76)

Diagnostic de l'état de pollution des sols

Février 2012 Rapport A64585/A

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE

5 rue Montaigne 76178 ROUEN Cedex

AGENCE PARIS CENTRE NORMANDIE Equipe Sites et Sols Pollués Citis « Le Pentacle » - Avenue de Tsukuba 14209 Hérouville Saint-Clair Cedex

Tél. :02 31 46 12 46 Fax. : 02 31 46 12 40

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Sommaire

		Pages
1.	Introduction	2
2. 2.1. 2.2.	Présentation du site Localisation Etat actuel du site	5
3. 3.1. 3.2.	Méthodes et moyens Présentation Moyens mis en œuvre	8
4. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	Résultats Nature des terrains Résultats des analyses de sols Résultats de l'analyse des gaz du sol Eaux souterraines Caractérisation des remblais Autres observations	18 27 29
5. 5.1. 5.2. 5.3. 5.4.	Interprétation des résultats et commentaires	45 45
6.	Recommandations	48
Liste	des figures	
Figur Figur Figur Figur	re 1 : Localisation géographique (extrait de géoportail.fr)	17 38 41

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Liste des tableaux

Tableau 1 : Investigations proposées au droit de l'ancienne papeterie	9
Tableau 2 : Investigations proposées au droit de l'ancienne fonderie	10
Tableau 3: Répartition des analyses par sondage	13
Tableau 4: Moyens de prélèvement aux piézomètres	16
Tableau 5 : Description des terrains traversés au droit des 15 sondages	18
Tableau 6 : Résultats en hydrocarbures totaux dans les échantillons de sols	20
Tableau 7: Résultats en HAP dans les échantillons de sols	21
Tableau 8 : Résultats en CAV dans les échantillons de sols	22
Tableau 9 : Résultats en COHV dans les échantillons de sols	23
Tableau 10 : Valeurs des bruits de fond géochimique national et local	24
Tableau 11 : Résultats en éléments traces métalliques dans les échantillons	s de
sols	25
Tableau 12 : Résultats en dioxines et furannes dans les échantillons de sols	27
Tableau 13: Résultats des analyses de gaz du sol	28
Tableau 14 : Profondeurs d'eau mesurées	29
Tableau 15: Résultats des analyses d'eaux souterraines (en μg/l)	31
Tableau 16: Descriptif des fosses remblayées (ancienne fonderie)	34
Tableau 17 : Descriptifs des dépôts de remblais (ancienne papeterie)	37
Tableau 18: Tableau de synthèse des résultats des tests d'acceptabilité	39

Liste des annexes

- Annexe 1 Références des documents
- Annexe 2 Prises de vues des travaux de reconnaissance
- Annexe 3 Relevé des points de sondages (Cabinet GEOMAT)
- Annexe 4 Fiches de prélèvement des échantillons de sols
- Annexe 5 Fiches de prélèvement des échantillons de gaz du sol
- Annexe 6 Coupe géologique et technique du piézomètre PZF1
- Annexe 7 Fiches de prélèvement des échantillons d'eau souterraine
- Annexe 8 Fiches descriptives des remblais
- Annexe 9 Rapport d'analyses Alcontrol
- Annexe 10 Tableau de synthèse des résultats d'analyses de sols
- Annexe 11 Grille de codification des prestations selon le référentiel QUALIPOL

Antea G	roup				
	Antea G	Antea Group	Antea Group	Antea Group	Antea Group

1. Introduction

L'Établissement Public Foncier de Normandie (EPFN) est Maître d'Ouvrage d'études de diagnostic pollution dans le cadre du « fond friches ».

Dans le cadre du projet de reconversion de 2 sites contigus à Vernon (Eure), l'ancienne fonderie et l'ancienne papeterie SMURFIT, l'EPFN a confié à Antea Group une campagne de reconnaissance de la qualité des sols et des eaux souterraines.

Ce diagnostic proposé par Antea Group suite à la visite du site en présence de l'EPFN le 22 août 2011 est basé sur les résultats des précédents diagnostics déjà exécutés par Antea Group pour le compte de Maître DIESBECQ pour ce qui concerne la fonderie (en 2001) et SMURFIT KAPPA PAPIERS RECYCLES DE FRANCE pour ce qui concerne l'ancienne papeterie (en 2007 et 2008).

Les travaux effectués, les résultats obtenus ainsi que les recommandations associées font l'objet du présent document.

2. Présentation du site

2.1. Localisation

L'ancienne fonderie et l'ancienne papeterie sont localisées au nord-est de la commune de Vernon, à proximité de la Seine le long de la route de Rouen, ou route nationale 15 (cf. figure 1).

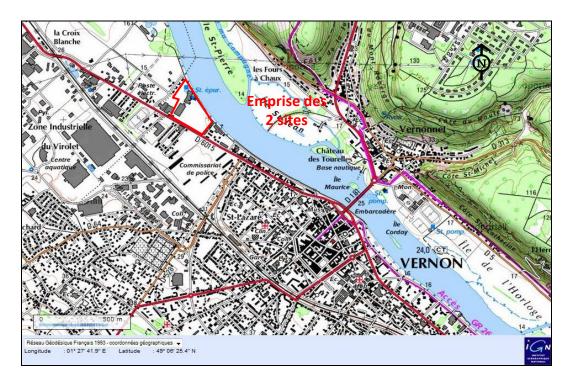


Figure 1 : Localisation géographique (extrait de géoportail.fr)

La topographie sur l'emprise des 2 sites est plane et l'altitude au sol est proche de +15 m NGF.

Les 2 sites sont implantés dans une zone à activités résidentielles et commerciales (cf. figures 1 et 2).

La zone d'étude est limitée :

- au nord-est, par le chemin de halage longeant la Seine,
- à l'est par des immeubles de logements,

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

- au sud-ouest par la route nationale près de laquelle sont présentes des habitations et des activités commerciales,
- à l'ouest par un garage CITROËN,
- au nord-ouest par des habitations rue de l'Hôtel des Prés.

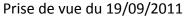
Figure 2 : Vue aérienne des 2 sites (extrait de géoportail.fr)

2.2. Etat actuel du site

2.2.1. Ancienne fonderie

Actuellement, il n'existe plus de bâtiment sur l'emprise de l'ancienne fonderie à l'exception de celui présent le long de la route de Rouen à l'extrémité sud-est.

Les anciennes fosses ou caves ont été remblayées (cf. prise de vue de la page suivante).



Prise de vue du 19/09/2011

2.2.2. Ancienne papeterie

Les bâtiments sont encore en place. Des dépôts de gravats et déchets divers sont entreposés sur le site dans l'un des bâtiments et en extérieur sur enrobé au nord-ouest des bâtiments (cf. prises de vue ci-dessous).

Prise de vue du 23/09/2011

Antea Group	
 7 11.100 O. Oup	

3. Méthodes et moyens

3.1. Présentation

La campagne de reconnaissance a été dimensionnée suite à la visite du site en présence de l'EPFN le 22 août 2011 et à l'examen des rapports relatifs aux précédents diagnostics déjà exécutés par Antea Group pour le compte de Maître DIESBECQ pour ce qui concerne la fonderie et SMURFIT KAPPA PAPIERS RECYCLES DE FRANCE pour ce qui concerne l'ancienne papeterie (cf. références des documents en annexe 1).

Les investigations prévues sont décrites dans les tableaux de la page suivante.

Les principales modifications apportées au programme proposé sont les suivantes :

- Deux des 3 anciens piézomètres de la fonderie ayant disparu (PZ1 et PZ3), les contrôles de la qualité des eaux souterraines ont été réalisés sur le nouveau piézomètre (PZF1) et le PZ2 de l'ancienne fonderie (PZF2) ainsi que sur l'un des piézomètres de l'ancienne papeterie (PZ2),
- En raison d'une impossibilité d'accès, le piézo gaz, prévu au droit de l'ancienne papeterie n'a pas été exécuté.

Ancienne papeterie

Reconnaissance	Argumentaire	Investigations proposées
Sols	Un diagnostic approfondi a été réalisé dans le cadre de la cessation d'activité du site => des investigations complémentaires ne sont pas nécessaires à ce stade du projet	
Eaux souterraines	Un diagnostic approfondi a été réalisé dans le cadre de la cessation d'activité du site. Un suivi de la qualité de la nappe est effectué par SMURFIT KAPPA PAPIERS RECYCLES DE FRANCE => des investigations complémentaires ne sont pas nécessaires à ce stade du projet.	
Gaz des sols	4 piézoGAZ ont été implantés sur le site suite à des traces de COHV et de HAP détectées dans la nappe. Ces mêmes traces ont été mesurées lors d'une campagne sur certains PiézoGAZ. Elles n'ont pas été confirmées lors d'une autre campagne. Nous proposons de réaliser 2 prélèvements de gaz pour contrôle. En 2008, SMURFIT a éliminé l'ancienne cuve à gasoil du bâtiment à l'entrée du site et traité des terres impactées. Nous proposons de réaliser un piézoGAZ au niveau de cette zone pour contrôle.	 2 prélèvements de gaz sur 2 piézomètres existants avec recherche des HCT, COHV, BTEX et HAP 1 piézoGaz avec analyse des HCt et BTEX
Déchets	L'ancien propriétaire (Société FONCAR) du site a laissé des déchets de démolition/déconstruction dans des bâtiments et hors bâtiments. Il convient de caractériser ces déchets pour orienter les filières d'élimination et les couts associés.	Observations et description des déchets en présence : - 10 prélèvements d'échantillons de sols représentatifs à la pelle mécanique, - 10 Analyses de Pack ISDi et amiante, - Estimation des volumes.

Tableau 1 : Investigations proposées au droit de l'ancienne papeterie

 Antea Group	

Ancienne fonderie

Reconnaissance	Argumentaire	Investigations proposées
Sols	Le diagnostic initial (2002) comprenait 11 sondages de sols. Ces reconnaissances ont montré des impacts diffus en Eléments traces métalliques et plus localisés en composés organiques (cuves). De nombreuses zones sous bâti n'ont pas pu être investiguées faute d'accès, notamment au droit d'anciennes caves antérieures à 1948. Le site est recouvert d'au moins 1 m de remblais d'origine diverse. Les anciens propriétaires ont remblayé des excavations avec des remblais d'origine diverse	 10 sondages de 3 m à la GEOPROBE répartis au droit des sources de pollution potentielles identifiées en 2002, 5 sondages de 3 m à la GEOPROBE répartis de façon plus aléatoire, 5 sondages de 3 m à la pelle mécanique au niveau des excavations remblayées, 10 Analyses avec recherche des HCT, COHV, HAP, CAV et ETM, 10 analyses de dioxines/furanes, 10 Packs ISDi, 3 analyses TPH (pour éventuelle EQRS), 2 granulométries (pour éventuelle EQRS).
Eaux souterraines	3 piézomètres ont été implantés au droit du site (2 aval et 1 amont). Le cœur de l'activité du site, notamment au niveau des anciennes caves proches de la nappe, n'a pas été investigué faute d'accès	 3 prélèvements d'eaux dans chacun des piézomètres existants, 1 piézomètre supplémentaire au droit des anciens ateliers, 4 analyses d'eaux avec recherche des HCT, COHV, HAP, CAV et PCB 1 analyse TPH
Gaz des sols	Aucun piézomètre Gaz n'a été réalisé en 2002. A ce stade du projet nous ne proposons pas d'investigations de ce type.	

Tableau 2 : Investigations proposées au droit de l'ancienne fonderie

 Antea Group	
•	

3.2. Moyens mis en œuvre

3.2.1. Présentation

Les prises de vues des travaux de reconnaissance sont rassemblées sur la planche de l'annexe 2. La localisation des travaux de reconnaissance est indiquée sur le plan de la figure 3.

Le cabinet de Géomètres Expert GEOMAT a procédé le 2 novembre 2011 au levé topographique des sondages. Les coordonnées des points sont indiquées sur les plans de l'annexe 3 à une échelle de 1/1000. Le fond de plan n'est donné qu'à titre indicatif.

3.2.2. Sondages

Les sondages S1 à S15 ont été exécutés le 21 septembre 2011 par la société ENOMFRA à l'aide d'un atelier de sondages carottés de type GEOPROBE.

Les sondages d'une profondeur de 2 à 3,6 m, ont été exécutés à sec par battage à l'aide d'un carottier de diamètre extérieur 56 mm qui recueille les sols tous les mètres, dans des gaines PVC transparentes.

Les carottes ont ensuite été ouvertes sur place et les échantillons de sols ont été prélevés après description des terrains traversés.

3.2.3. Fouilles

Les fouilles à la pelle mécanique ont été exécutées le 23 septembre 2011 par l'entreprise ETS sous la conduite d'Antea Group.

Les travaux à la pelle mécanique ont consisté en la réalisation :

- 5 fouilles à la pelle mécanique (E, F1, F2, F3, G) au droit des caves remblayées sur l'emprise de l'ancienne fonderie,
- Prélèvements de matériaux dans les tas de déchets et remblais présents sur l'emprise de l'ancienne papeterie.

Ante	ea Group
Aitte	ea dioup

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

3.2.4. Analyses de sols

Le laboratoire Alcontrol a procédé aux analyses suivantes sur les échantillons de sols :

- **éléments traces métalliques** (ETM) : antimoine, arsenic, cadmium, chrome total, cuivre, étain, mercure, nickel, plomb et zinc.
- hydrocarbures aromatiques polycycliques (HAP): 16 substances: acénaphtylène, acénaphtène, fluorène, naphtalène, phénanthrène, anthracène, fluoranthène, benzo(a)anthracène, pyrène, chrysène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, dibenzo(ah)anthracène, benzo(ghi)pérylène, indéno(123-cd)pyrène.
- hydrocarbures totaux (HCT C10-C40),
- **composés aromatiques volatils** (CAV ou BTEX) : 4 composés : benzène, toluène, éthylbenzène, xylènes,
- composés organohalogénés volatils (COHV): 15 composés:
 1,2-dichloroéthane, 1,1-dichloroéthène, cis-dichloroéthène, trans-dichloroéthène, dichlorométhane, 1,2-dichloropropane,
 1,3-dichloropropène, tétrachloroéthène, tetrachlorométhane (tétrachlorure de carbone), 1,1,1-trichloroéthane, trichloroéthène, trichlorométhane (chloroforme), chlorure de vinyle, héxachlorobutadiène, bromoforme,
- Dioxines et furannes.

La répartition des analyses par sondage est indiquée dans le tableau de la page suivante.

Antea Group	
Antea Group	

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Sondage	Profondeur analysée	Analyses
S1	0 à 1 m	HCT, HAP, BTEX, COHV, ETM, dioxines et furannes
S2	0 à 1 m	HCT, HAP, BTEX, COHV, ETM, dioxines et furannes
S3	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S4	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S 5	0 à 1 m	HCT, HAP, BTEX, COHV, ETM, dioxines et furannes
S6	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S7	0 à 1 m	HCT, HAP, BTEX, COHV, ETM, dioxines et furannes
S8	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S9	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S10	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S11	0 à 1 m	HCT, HAP, BTEX, COHV, ETM, dioxines et furannes
S12	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S13	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S14	0 à 1 m	HCT, HAP, BTEX, COHV, ETM
S15	0 à 1 m	HCT, HAP, BTEX, COHV, ETM

Tableau 3: Répartition des analyses par sondage

Des tests d'acceptabilité en installation de stockage de déchets inertes ont également été effectués sur des échantillons de matériaux prélevés au droit :

- des caves remblayées sur l'emprise de l'ancienne fonderie (4 échantillons),
- des dépôts de remblais et déchets localisés dans l'ancienne papeterie (7 échantillons).

Les analyses par échantillon comprennent la recherche des éléments suivants :

- sur brut : COT, BTEX, PCB, hydrocarbures totaux, HAP,
- sur éluat : métaux (arsenic, baryum, cadmium, chrome total, cuivre, mercure, molybdène, nickel, plomb, antimoine, sélénium, zinc), fluorures, indice phénol, COT, pH, chlorures, sulfates sur éluat et fraction soluble.

Une recherche de la présence d'amiante a été effectuée sur des échantillons prélevés dans les dépôts de remblais présents sur l'ancienne papeterie (A1+A2, D1+D2 et D5).

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Les procédures analytiques sont les suivantes :

Paramètre	Procédure d'analyse
Matières sèches	Equivalent à NEN-ISO 11465
Hydrocarbures totaux	Méthode interne basée sur ISO 16703, extraction acétone-
	héxane, analyse par CG-FID
СОТ	Conforme à NEN-EN 13137
рН	Conforme à NEN-ISO 10390
НАР	Méthode interne basée sur ISO 18287, extraction acétone- héxane, analyse par CG-MS
BTEX, COHV	Méthode interne basée sur ISO 22155, Headspace CG/MS
PCB	Méthode interne basée sur ISO18287, extraction acétone-
	pentane, analyse par CG-MS
Métaux	Conforme à NEN-EN-ISO 11885 et NEN 6966
Mercure	NEN ISO 16772
COT (sur éluat)	Conforme à NEN 1484
Conductivité (sur éluat)	Conforme à NEN-ISO 7888
pH (sur éluat)	Conforme à NEN-6411
Métaux (sur éluat)	Conforme à NEN-EN-ISO 17294/2
Mercure (sur éluat)	NEN 7324
Fraction soluble (sur éluat)	Méthode graphimétrique interne
Indice phénol (sur éluat)	Méthode interne photométrique
Fluorures (sur éluat)	Conforme à NEN 6483
Chlorures, sulfates (sur éluat)	Conforme à NEN-EN-ISO 104304-2
Recherche qualitative d'amiante	Conforme à NEN 5896

3.2.5. Prélèvements et analyses de gaz du sol

Les échantillons de gaz du sol ont été prélevés le 11 octobre 2011 (pompage sur support charbon actif) au droit des piézomètres gaz PG1 et PG2 déjà existants (cf. figure 3). Les prélèvements ont été effectués à un débit de pompage de 0,5 l/min.

Les analyses de gaz, dont le détail est indiqué ci-après, ont été réalisées par le laboratoire Alcontrol :

- **composés aromatiques volatils** (CAV ou BTEX) : 4 composés : benzène, toluène, éthylbenzène, xylènes,
- hydrocarbures polycycliques aromatiques (HAP): 16 substances: naphtalène, acénaphtylène, acénaphtène, fluorène, phénanthrène, anthracène, fluoranthène, pyrène, benzo(a)anthracène, chrysène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, dibenzo(ah)anthracène, benzo(ghi)pérylène, indéno(123-cd)pyrène,

Antea Group	

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

- composés organohalogénés volatils (COHV): 15 composés: 1,2-dichloroéthane, 1,1-dichloroéthène, cis-dichloroéthène, trans-dichloroéthène, dichlorométhane, 1,2-dichloropropane, 1,3-dichloropropène, tétrachloroéthène, tetrachlorométhane (tétrachlorure de carbone), 1,1,1-trichloroéthane, trichloroéthène, trichlorométhane (chloroforme), chlorure de vinyle, héxachlorobutadiène, bromoforme,
- hydrocarbures totaux (HCT) avec fractions carbonées C>5-C16.

Les procédures analytiques sont les suivantes :

Paramètre	Procédure d'analyse
Hydrocarbures volatils (C>5-C16)	Méthode interne CG/MS
НАР	NIOSH 5506
CAV	Méthode interne CG/MS
COHV	Méthode interne CG/MS

3.2.6. Piézomètre

Le piézomètre (PZF1) a été exécuté par la société ENOMFRA le 6 octobre 2011. L'ouvrage de 9 m de profondeur a été foré à la tarière au diamètre de 150 mm. Il a été équipé par un tube plein jusqu'à 2 m de profondeur puis crépiné jusqu'à 9 mètres par rapport au sol (diamètre intérieur de 52 mm).

L'espace annulaire a été garni d'un massif filtrant de 9 m à 1 m de profondeur puis par de la bentonite de 0,5 à 1 m et enfin cimenté jusqu'à la surface du sol. L'ouvrage dépasse de 0,7 m du sol et est équipé d'un capot métallique.

3.2.7. Prélèvement des échantillons d'eau

Les prélèvements ont été exécutés le 11 octobre 2011 au droit des piézomètres suivants (cf. figure 3) :

- PZF1: nouveau piézomètre au centre de l'ancienne fonderie,
- PZF2 : ancien piézomètre de l'ancienne fonderie,
- PZ2 : piézomètre de l'ancienne papeterie.

La purge des ouvrages a été réalisée par pompage à l'aide d'une pompe immergée 12V à un débit de 0,4 m³/h puis les échantillons ont été prélevés à l'aide d'un tube préleveur jetable.

Antea Group	
 7 Ca G. Gap	

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Les moyens de prélèvement sont indiqués dans le tableau ci-dessous.

Piézomètre	Outil de purge	Temps de	Volume purgé	Outil de prélèvement
		pompage		
PZF1	Pompe immergée 12V	20 minutes	133 litres	Tube préleveur jetable
PZF2	Pompe immergée 12V	20 minutes	133 litres	Tube préleveur jetable
PZ2	Pompe immergée 12V	20 minutes	133 litres	Tube préleveur jetable

Tableau 4 : Moyens de prélèvement aux piézomètres

Les fiches de prélèvements sont disponibles à l'annexe 7.

3.2.8. Analyse des échantillons d'eau

Les analyses des échantillons d'eau ont été réalisées par le laboratoire Alcontrol. Elles ont consisté à rechercher les mêmes paramètres que pour les échantillons de sols prélevés au droit des sondages, à savoir :

- **éléments traces métalliques** (ETM) : antimoine, arsenic, cadmium, chrome total, cuivre, étain, mercure, nickel, plomb et zinc.
- hydrocarbures aromatiques polycycliques (HAP): 16 substances,
- composés organohalogénés volatils (COHV): 15 composés,
- composés aromatiques volatils (CAV ou BTEX) : 4 composés,
- PCB: 7 composés: PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, PCB180.

Les procédures analytiques sont les suivantes :

Paramètre	Procédure d'analyse	
HCT C10-C40	Méthode interne, extraction hexane, analyse par CG-FID	
CAV	Méthode interne, headspace CG-MS	
HAP	Méthode interne, headspace CG-MS	
COHV	Méthode interne, headspace CG-MS	
PCB	Méthode interne, LVI CG-MS	

Antea Group
ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE
Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols

Rapport A64585/A

Figure 3 : Plan de localisation des travaux de reconnaissance

4. Résultats

4.1. Nature des terrains

Les fiches de prélèvement de sols sont présentées en annexe 4. Les terrains traversés sont représentés par des remblais à dominante sableuse contenant quelquefois des résidus de fonderie, briques et silex qui reposent sur une argile sableuse marron.

La description des sondages est synthétisée dans le tableau ci-dessous.

Sondage	Profondeur	Nature des terrains		
S1	2,4 m	Remblais sableux noirâtre avec résidus de fonderie.		
S2	3 m	Dalle béton (0,15m). Remblais sableux marron. Argile sableuse marron à		
		0,3m, humide à 2,8 m de profondeur.		
S 3	3 m	Dalle béton (0,15m). Argile sableuse marron.		
S4	3,6 m	Dalle béton (0,05m). Remblais sableux et silex. Argile marron sableuse à		
		silex à 1,1 m. Sable et silex humide à 3 m.		
S 5	3 m	Dalle béton (0,05m). Remblai argilo-sableux brun foncé. Argile sableuse		
		marron à 0,5 m. Sable argileux beige à 1 m.		
S6	3,4 m	Dalle béton (0,15m). Sable fin beige à 0,15m. Sable gris argileux humide à		
		1,5 m avec odeur HCT.		
S7	3,2 m	Remblais sablo-argileux noirâtre. Argile limoneuse à 0,5m. Sables argileux		
		à 2 m, humide à 2,5 m.		
S8	3 m	Dalle béton (0,15m). Remblais sableux noirâtre. Argile sableuse marron à		
		0,3 m, humide à 2 m de profondeur.		
S 9	3 m	Dalle béton (0,1m). Remblais sableux noirâtre avec résidus de fonderie.		
		Argile marron à 1,2 m de profondeur.		
S10	2,9 m	Dalle béton (0,15m). Remblais sablo-argileux avec résidus de fonderie et		
		brique. Argile marron limoneuse à 2 m.		
S11	2 m	Dalle béton (0,05m). Remblais noirâtre poudreux, résidus de fonderie.		
S12	2,4 m	Dalle béton (0,4m). Remblais de démolition (briques, béton).		
S13	3 m	Dalle béton (0,15m). Remblais limoneux noirâtre et mâchefer. Argile		
		légèrement sableuse à 2m.		
S14	3,2 m	Dalle béton (0,15m). Remblais sableux gris. Argile grise à 0,5 m, sableuse		
		et humide à partir de 2,5m.		
S15	3,4 m	Dalle béton (0,15m). Remblais sableux noirâtre à silex et briques. Limon		
		noirâtre à 1 m. Argile marron grise à 2m.		

Tableau 5 : Description des terrains traversés au droit des 15 sondages

Anton Group	
Antea Group	

Aucun indice de pollution visuel ou olfactif n'a été observé dans les sols à l'exception d'une odeur d'hydrocarbures dans des sables argileux de 1,5 à 3,4 m au sondage S6.

4.2. Résultats des analyses de sols

Les bordereaux d'analyses sont rassemblés en annexe 9 et les résultats sont repris dans les tableaux ci-après et dans le tableau de synthèse de l'annexe 10.

Les outils d'appréciation de la qualité des sols s'appuient sur la méthodologie relative aux sites et sols pollués du 08 février 2007, qui ne propose pas de valeurs réglementaires de référence.

Pour appréhender le degré des impacts, les teneurs en éléments traces métalliques mesurées sont comparées aux limites de quantification et au bruit de fond géochimique des éléments traces métalliques définis par l'INRA (programme ASPITET) et par le Réseau de Mesure de la Qualité des Sols (RMQS).

Pour les paramètres organiques, les résultats sont comparés en priorité aux limites de quantification analytiques mais également, à titre indicatif, aux critères d'acceptation en Installation de Stockage de Déchets (ISD).

Il a été retenu pour l'orientation des terres en Installation de Stockage de Déchets Inertes (ISDI), les valeurs réglementaires fournies par l'arrêté du 28 octobre 2010.

Rappelons que la réglementation des Installations de Stockages de Déchets fixe ces seuils à partir d'analyses effectuées sur les sols bruts, mais aussi sur l'éluât (éléments traces métalliques, ions majeurs, phénols, COT).

Ces analyses n'ont pas été réalisées sur les échantillons de sols prélevés au droit des sondages S1 à S15 mais dans les échantillons de matériaux prélevés dans les dépôts stockés sur l'ancienne papeterie et dans les fosses remblayées de l'ancienne fonderie.

4.2.1. Hydrocarbures totaux

Les valeurs d'hydrocarbures totaux (HCT) prennent en compte l'ensemble des hydrocarbures aliphatiques ou aromatiques présents dans les sols pour les fractions carbonées C10-C40 (hydrocarbures aliphatiques C10-C40 et HAP).

Le critère retenu pour définir la présence d'hydrocarbures totaux dans les sols est la limite de quantification (20 mg/kg-MS).

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Les résultats en hydrocarbures totaux avec la répartition des fractions carbonées sont repris dans le tableau ci-dessous.

	Fraction C10-C12	Fraction C12-C16	Fraction C16 - C21	Fraction C21 - C40	Hydrocarbures totaux C10-C40
Unité	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS
S1 (0-1)	<5	<5	<5	<5	<20
S2 (0-1)	<5	<5	<5	<5	<20
S3 (0-1)	<5	<5	<5	<5	<20
S4 (0-1)	<5	<5	49	1700	1800
S5 (0-1)	<5	17	28	33	80
S6 (0-1)	<5	<5	<5	<5	<20
S7 (0-1)	<5	<5	13	20	35
S8 (0-1)	<5	<5	<5	<5	<20
S9 (0-1)	<5	<5	<5	24	25
S10 (0-1)	<5	<5	10	71	80
S11 (0-1)	<5	11	39	350	400
S12 (0-1)	<5	<5	16	1400	1400
S13 (0-1)	<5	<5	<5	9.9	<20
S14 (0-1)	<5	<5	<5	<5	<20
S15 (0-1)	<5	<5	7.8	40	50

Tableau 6 : Résultats en hydrocarbures totaux dans les échantillons de sols

Les résultats en hydrocarbures totaux sont inférieurs ou égaux à la limite de quantification de 20 mg/kg-MS sur un peu moins de la moitié des sondages (S1, S2, S3, S6, S8, S13 et S14).

Les autres résultats en hydrocarbures totaux sont compris entre 25 mg/kg-MS et 1800 mg/kg-MS (valeur maximale au sondage S4). Les sondages S4 et S12 présentent les plus fortes concentrations en HCT C10-C40. Les hydrocarbures représentés sont majoritairement des fractions lourdes.

La troisième valeur la plus significative est de 400 mg/kg-MS au sondage S11.

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

4.2.2. HAP

Le critère retenu pour définir la présence de HAP dans les sols est le seuil de quantification (0,02 mg/kg pour un composé et 0,32 mg/kg-MS pour la somme des 16 substances).

Les résultats en HAP totaux sont repris dans le tableau ci-dessous. Le détail des analyses est donné dans le tableau de l'annexe 10.

Echantillon	HAP totaux (somme des 16 composés) en mg/kg-MS
S1 (0-1)	Mesure non réalisée en raison d'un phénomène d'absorption
S2 (0-1)	<0,32
S3 (0-1)	<0,32
S4 (0-1)	1,1
S5 (0-1)	15
S6 (0-1)	<0,32
S7 (0-1)	43
S8 (0-1)	1
S9 (0-1)	2,4
S10 (0-1)	6,3
S11 (0-1)	1,9
S12 (0-1)	0,35
S13 (0-1)	0,86
S14 (0-1)	<0,32
S15 (0-1)	4,4

Tableau 7 : Résultats en HAP dans les échantillons de sols

Les résultats en HAP sont compris entre des valeurs inférieures au seuil de quantification et 43 mg/kg-MS.

Les 2 valeurs maximales sont mesurées au droit des sondages S5 (15 mg/kg-MS) et S7 (43 mg/kg-MS). Parmi les HAP recherchés, le fluoranthène, le pyrène et le benzo(b)fluoranthène présentent les concentrations les plus élevées (cf. tableau détaillé de l'annexe 10).

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

4.2.3. Composés aromatiques volatils

Le critère retenu pour définir la présence de CAV dans les sols est le seuil de quantification (0,05 mg/kg-MS).

Les résultats en CAV totaux sont repris dans le tableau ci-dessous.

Echantillon	Benzène	Toluène	Ethylbenzène	Xylènes	BTEX total
Unité	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS
S1 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S2 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S3 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S4 (0-1)	0,07	0,14	<0,05	<0,05	0,25
S5 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S6 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S7 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S8 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S9 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S10 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S11 (0-1)	<0,05	0,06	<0,05	<0,05	<0,2
S12 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S13 (0-1)	<0,05	0,07	<0,05	<0,05	<0,2
S14 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2
S15 (0-1)	<0,05	<0,05	<0,05	<0,05	<0,2

Tableau 8 : Résultats en CAV dans les échantillons de sols

La majorité des résultats est inférieure à la limite de quantification égale à 0,05 mg/kg-MS. Des faibles concentrations sont mesurées en :

- benzène au sondage S4,
- toluène aux sondages S4, S11 et S13.

4.2.4. Composés organo-halogénés volatils

Le critère retenu pour définir la présence de composés organo-halogénés volatils (COHV) dans les sols est le seuil de quantification (variable selon les composés : 0,02 mg/kg-MS à 0,1 mg/kg-MS)).

Les résultats en COHV sont repris dans le tableau de la page suivante.

СОНУ	1,2-dichloroéthane	1,1-dichloroéthène	cis-1,2- dichloroéthène	trans 1,2- dichloroéthylène	dichlorométhane	1,2-dichloropropane	1,3-dichloropropène	tétrachloroéthylène	tétrachlorométhane	1,1,1-trichloroéthane	trichloroéthylène	chloroforme	chlorure de vinyle	hexachlorobutadiène	bromoforme
Unité	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS
S1 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	0,06	0,19	<0,02	<0,02	<0,1	<0,05
S2 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	0,06	<0,02	<0,02	<0,02	<0,1	<0,05
S3 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S4 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S5 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S6 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S7 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S8 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S9 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S10 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S11 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S12 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S13 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	0,02	<0,02	0,19	<0,02	<0,02	<0,02	<0,1	<0,05
S14 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05
S15 (0-1)	<0,03	<0,05	<0,03	<0,02	<0,02	<0,03	<0,1	<0,02	<0,02	<0,03	<0,02	<0,02	<0,02	<0,1	<0,05

Tableau 9 : Résultats en COHV dans les échantillons de sols

Les résultats en COHV des analyses de sols sont inférieurs aux seuils de quantification à l'exception :

- d'une concentration en tétrachloroéthylène égale au seuil de quantification au sondage S13,
- de concentrations en 1,1,1-Trichloroéthane aux sondages S1, S2 et S13,
- d'une valeur en trichloroéthylène au sondage S1.

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

4.2.5. Eléments Traces Métalliques

Les résultats en Eléments Traces Métalliques (ETM), repris dans le tableau n°11 sont comparés aux bruit de fond local (RMQS) de l'horizon 30-50 cm et, lorsqu'il n'existe pas, à la gamme de valeurs issues des recherches de l'INRA¹ pour des sols ordinaires (cf. tableau 10).

Les fonds géochimiques nationaux « *Programme ASPITET de l'INRA* » et locaux « *Réseau de Mesure de la Qualité des Sols : RMQS* » sont repris dans le tableau 11 de la page suivante.

mg/kg	bruit de fond national (INRA) Gamme de valeurs observées dans le cas de sols ordinaires	Bruit de fond local (RMQS) ² horizon 30-50 cm
As	1 à 25	/
Cd	/	0,5255
Cr	/	119,805
Cu	/	32,6975
Hg	0,02 à 0,10	/
Ni	/	73,3625
Pb	/	27,22
Zn	/	163,12

Tableau 10 : Valeurs des bruits de fond géochimique national et local

¹ Teneurs totales en éléments traces métalliques dans les sols (France), références et stratégies d'interprétation, D. Baize, 1997.

24

.

² Ces valeurs (vibrisses) jouent un rôle d'indicateur de tendance régionale prenant en compte à la fois le bruit de fond géochimique et les apports d'origine anthropique. Elles correspondent à la teneur limite au-delà de laquelle une valeur peut être considérée comme anomalique. Elles permettent de détecter les anomalies ponctuelles tout en s'affranchissant d'anomalies étendues.

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Echantillon	arsenic	cadmium	chrome	cuivre	mercure	plomb	nickel	zinc
Unité	mg/kg MS	mg/kg MS	mg/kg MS	mg/kg MS				
S1 (0-1)	5,4	<0,4	<15	23	<0,05	<13	9,3	<20
S2 (0-1)	5,3	<0,4	15	22	<0,05	14	9,6	32
S3 (0-1)	5,3	<0,4	16	7,2	<0,05	<13	9,9	26
S4 (0-1)	6,1	<0,4	<15	120	0,06	15	14	55
S5 (0-1)	8,1	<0,4	22	110	0,1	51	15	97
S6 (0-1)	4,1	<0,4	<15	<5	<0,05	<13	7,9	<20
S7 (0-1)	7	<0,4	18	15	0,13	54	11	87
S8 (0-1)	14	3,3	22	2200	<0,05	22	140	270
S9 (0-1)	7,4	<0,4	<15	120	<0,05	21	11	31
S10 (0-1)	390	1,6	19	1600	0,36	8700	61	640
S11 (0-1)	5	<0,4	<15	30	<0,05	19	19	39
S12 (0-1)	<4	<0,4	<15	160	<0,05	<13	<3	<20
S13 (0-1)	8,3	<0,4	26	43	<0,05	<13	21	<20
S14 (0-1)	<4	<0,4	17	5,4	<0,05	<13	9,9	40
S15 (0-1)	23	<0,4	45	350	0,07	51	39	170
Bruit de fond	1 à 25	0,5255	119,805	32,6975	0,02 à 0,1	27,22	73,3625	163,12

Tableau 11 : Résultats en éléments traces métalliques dans les échantillons de sols

Les résultats en chrome sont inférieurs au bruit de fond local.

Les concentrations relatives aux autres ETM sont inférieures au bruit de fond à l'exception :

- de la concentration en arsenic au sondage S10,
- des concentrations en cadmium aux sondages S8 et S10,
- des concentrations en cuivre aux sondages S4, S5, S8, S9, S10, S12, S13 et S15,
- des concentrations en mercure aux sondages S7 et S10.
- des concentrations en plomb aux sondages S5, S7, S10 et S15,
- de la concentration en nickel au sondage S8,
- des concentrations en zinc aux sondages S8, S10 et S15.

Antea Group	

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

4.2.6. Dioxines et furannes

Les dioxines et les furannes sont des composés organochlorés, composés de deux cycles aromatiques, d'oxygène et de chlore. Les dioxines sont au nombre de 75 et les furannes au nombre de 135. Sur ces 210 congénères existants, seuls 17 sont actuellement considérés comme toxiques. Un coefficient est attribué à chacun de ces congénères, proportionnellement à son degré de nocivité (les coefficients appelés facteurs équivalent toxique s'échelonnent entre 1 et 0,001).

La concentration totale en équivalent international de toxicité (I.TEQ) est exprimée en fonction de la concentration en ces 17 congénères dans l'échantillon sur la base des facteurs équivalent toxique établis selon le référentiel NATO/CCMS (cf. tableau ci-dessous).

PCDF (Polychlorodibenzofuranes)	Référentiel OTAN/CCMS
2378-TetraCDF	0,1
12378-PentaCDF	0,05
23478-PentaCDF	0,5
123478-HexaCDF	0,1
123678-HexaCDF	0,1
123789-HexaCDF	0,1
234678-HexaCDF	0,1
1234678-HeptaCDF	0,01
1234789-HeptaCDF	0,01
OctaCDF	0,001
PCDD (Polychlorodibenzo-p-dioxines)	
2378-TetraCDD	1
12378-PentaCDD	0,5
123478-HexaCDD	0,1
123678-HexaCDD	0,1
123789-HexaCDD	0,1
1234678-HeptaCDD	0,01
OctaCDD	0,001

Les résultats en dioxines et furannes recherchés dans 5 échantillons de sols sont repris dans le tableau de la page suivante.

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

	S1 (0-1m)	S2 (0-1m)	S5 (0-1m)	S7 (0-1m)	S11 (0-1m)
Unité	ng/kg-MS	ng/kg-MS	ng/kg-MS	ng/kg-MS	ng/kg-MS
PCDF (Polychlorodibenzofuranes)					
2378-TetraCDF	18	<2	<2	<2	<2
12378-PentaCDF	9,3	<2	6	<2	<2
23478-PentaCDF	9	<2	<2	<2	<2
123478-HexaCDF	12	10	2,8	<2	<2
123678-HexaCDF	5,6	<2	2,6	<2	<2
123789-HexaCDF	<2	<2	<2	<2	<2
234678-HexaCDF	5,3	<2	<2	<2	<2
1234678-HeptaCDF	12	51	9,6	<2	4,3
1234789-HeptaCDF	<2	24	3,3	<2	<2
OctaCDF	13	170	19	5,1	<2
PCDD (Polychlorodibenzo-p-dioxines)					
2378-TetraCDD	6,8	4,8	<2	<2	<2
12378-PentaCDD	11	<2	<2	<2	<2
123478-HexaCDD	5,2	<2	<2	<2	<2
123678-HexaCDD	<2	8,4	<2	<2	<2
123789-HexaCDD	11	10	2,8	<2	3,4
1234678-HeptaCDD	5,6	57	11	<2	31
OctaCDD	8,8	420	110	7,2	240
Equivalent International de toxicité selon le référentiel					
I-PCDD/F-TEQ Valeur basse	23	9,6	<2	<2	<2
I-PCDD/F-TEQ Valeur haute	24	13	6,5	5,8	6,5

Tableau 12 : Résultats en dioxines et furannes dans les échantillons de sols

Les résultats sont compris entre le seuil de quantification à 2 ng/kg-MS et 23 ng/kg-MS pour la fourchette basse et entre 5,8 ng/kg-MS et 24 ng/kg-MS pour la fourchette haute. Les concentrations les plus élevées sont observées au sondage S1.

4.3. Résultats de l'analyse des gaz du sol

Les bordereaux d'analyses des gaz du sol sont disponibles à l'annexe 9. Les résultats exprimés en μg ou en ng par support sont repris en $\mu g/m^3$ dans le tableau de la page suivante.

	Substance	Unité	PG1	PG2	Unité	PG1	PG2
	benzène	μg/éch.	<1	<1	μg/m³	<50	<50
CAN	toluène	μg/éch.	<1	<1	μg/m³	<50	<50
CAV	éthylbenzène	μg/éch.	<1	<1	μg/m³	<50	<50
	xylènes	μg/éch.	<3	<3	μg/m³	<150	<150
	naphtalène	ng/support	<66	<66	μg/m³	<3,3	<3,3
	anthracène	ng/support	<1.7	<1.7	μg/m³	<0,085	<0,085
	fluoranthène	ng/support	<6.6	<6.6	μg/m³	<0,33	<0,33
	phénanthrène	ng/support	<8.25	<8.25	μg/m³	<0,4125	<0,4125
	benzo(a)anthracène	ng/support	<6.6	<6.6	μg/m³	<0,33	<0,33
	chrysène	ng/support	<6.6	<6.6	μg/m³	<0,33	<0,33
	benzo(a)pyrène	ng/support	<5.0	<5.0	μg/m³	<0,25	<0,25
	benzo(ghi)pérylène	ng/support	<6.6	<6.6	μg/m³	<0,33	<0,33
HAP	benzo(k)fluoranthène	ng/support	<5.0	<5.0	μg/m³	<0,25	<0,25
	indéno(1,2,3-cd)pyrène	ng/support	<6.6	<6.6	μg/m³	<0,33	<0,33
	acénaphtylène	ng/support	<66	<66	μg/m³	<3,3	<3,3
	acénaphtène	ng/support	<66	<66	μg/m³	<3,3	<3,3
	fluorène	ng/support	<17	<17	μg/m³	<0,85	<0,85
	pyrène	ng/support	<9.90	<9.90	μg/m³	<0,495	<0,495
	benzo(b)fluoranthène	ng/support	<6.6	<6.6	μg/m³	<0,33	<0,33
	dibenzo(ah)anthracène	ng/support	<17	<17	μg/m³	<0,85	<0,85
	HAP totaux (16) - EPA	ng/support	<300	<300	μg/m³	<15	<15
	1,2-dichloroéthane	μg/éch.	<1	<1	μg/m³	<50	<50
	1,1-dichloroéthène	μg/éch.	<1	<1	μg/m³	<50	<50
	cis-1,2-dichloroéthène	μg/éch.	<1	<1	μg/m³	<50	<50
	trans 1,2-dichloroéthylène	μg/éch.	<1	<1	μg/m³	<50	<50
	dichlorométhane	μg/éch.	<1	<1	μg/m³	<50	<50
	1,2-dichloropropane	μg/éch.	<1	<1	μg/m³	<50	<50
	1,3-dichloropropène	μg/éch.	<1	<1	μg/m³	<50	<50
COHV	tétrachloroéthylène	μg/éch.	<1	<1	μg/m³	<50	<50
	tétrachlorométhane	μg/éch.	<1	<1	μg/m³	<50	<50
	1,1,1-trichloroéthane	μg/éch.	<1	7,7	μg/m³	<50	385
	trichloroéthylène	μg/éch.	<1	<1	μg/m³	<50	<50
	chloroforme	μg/éch.	<1	<1	μg/m³	<50	<50
	chlorure de vinyle	μg/éch.	<1	<1	μg/m³	<50	<50
	hexachlorobutadiène	μg/éch.	<1	<1	μg/m³	<50	<50
	bromoforme	μg/éch.	<1	<1	μg/m³	<50	<50
	fraction C6 - C8	μg/éch.	<10	<10	μg/m³	<500	<500
	fraction C8 - C10	μg/éch.	<10	<10	μg/m³	<500	<500
HCT	fraction C10-C12	μg/éch.	<10	<10	μg/m³	<500	<500
	fraction C12-C16	μg/éch.	<20	<20	μg/m³	<1000	<1000
	hydrocarbures volatils C6-C16	μg/éch.	<50	<50	μg/m³	<2500	<2500

Tableau 13 : Résultats des analyses de gaz du sol

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Les teneurs en COHV, HAP, CAV et HCT mesurées dans les gaz du sol au droit des pièzomètres gaz PZG1 et PZG2 sont inférieures aux limites de quantification à l'exception d'une concentration en 1,1,1-Trichloroéthane égale à 385 μ g/m³ mesurée au piézomètre gaz PG2.

4.4. Eaux souterraines

4.4.1. Piézométrie

Les trois piézomètres PZF1, PZF2 et PZ2 ont fait l'objet de prélèvements d'eaux souterraines et de mesures de niveaux d'eau.

La profondeur de la nappe proche de 3,5 m dans la partie médiane du site atteint 2 m à proximité de la Seine.

L'altitude de la nappe mesurée au droit des 3 piézomètres est comprise entre +12,56 m NGF à +12,08 m NGF.

Date: 11/10/2011	PZ2	PZF1	PZF2
Niveau statique / repère (m)	3,88	4,15	2,48
Niveau statique / sol (m)	3,39	3,45	1,97
Cote NGF haut du piézomètre ou repère (m NGF)	+15,96	+16,71	+15
Niveau statique de la nappe (m NGF)	+12,08	+12,56	+12,52

Tableau 14: Profondeurs d'eau mesurées

4.4.2. Résultats d'analyse des eaux souterraines

Les bordereaux d'analyses sont disponibles à l'annexe 9.

Conformément à la politique mise en place par le Ministère en charge de l'Environnement en février 2007, les concentrations doivent être comparées aux limites de qualité pour les substances chimiques dans l'eau destinée à la consommation humaine (article 1321-2, annexe 13-1 du Code de la Santé Publique) et aux limites de qualité des eaux brutes utilisées pour la production d'eau destinée à la consommation humaine (cf. arrêté du 11 janvier 2007).

En l'absence de références pour certaines substances dans l'arrêté du 11 janvier 2007, les recommandations de l'Organisation Mondiale de la Santé (OMS) pour l'eau de boisson sont utilisées.

Les résultats dans les eaux souterraines sont repris dans le tableau 15 ci-après.

				valeurs régle frança (11/01/	aises	Valeurs guides OMS
Cubatanas	D71 F	D735	D73		eau	eau
Substance COMPOSES AROMATIQUES	PZ1F	PZ2F	PZ2	eau brute	potable	potable
VOLATILS						
benzène	<0.2	<0.2	<0.2		1	10
toluène	<0.2	<0.2	<0.2			700
éthylbenzène	<0.2	<0.2	0.20			300
orthoxylène	<0.1	<0.1	<0.1			
para- et métaxylène	0.43	0.44	0.55			
xylènes	0.43	0.44	0.55			500
BTEX total	<1	<1	<1			
HYDROCARBURES						
AROMATIQUES POLYCYCLIQUES						
naphtalène	<0.1	<0.1	<0.1			
acénaphtylène	<0.1	<0.1	<0.1			
acénaphtène	<0.1	<0.1	<0.1			
fluorène	<0.05	<0.05	<0.05			
phénanthrène	<0.02	<0.02	<0.02			
anthracène	<0.02	<0.02	<0.02			
fluoranthène	<0.02	<0.02	<0.02			
pyrène	<0.02	<0.02	<0.02			
benzo(a)anthracène	<0.02	<0.02	<0.02			
chrysène	<0.02	<0.02	<0.02			
benzo(b)fluoranthène	<0.02	<0.02	<0.02			
benzo(k)fluoranthène	<0.01	<0.01	<0.01			
benzo(a)pyrène	<0.01	<0.01	<0.01		0,01	0,7
dibenzo(ah)anthracène	<0.02	<0.02	<0.02			
benzo(ghi)pérylène	<0.02	<0.02	<0.02			
indéno(1,2,3-cd)pyrène	<0.02	<0.02	<0.02			
HAP totaux (16) - EPA	<0.6	<0.6	<0.6			
somme 6 HAP (1)	<0.1	<0.1	<0.1	1		
COMPOSES ORGANO HALOGENES VOLATILS						
1,2-dichloroéthane	<0.1	<0.1	<0.1		3	30
1,1-dichloroéthène	0.36	<0.1	<0.1			30
cis-1,2-dichloroéthène	0.28	0.19	<0.1			50 (2)
trans 1,2-dichloroéthylène	0.14	<0.1	<0.1			
dichlorométhane	<0.5	<0.5	<0.5			20
1,2-dichloropropane	<0.2	<0.2	<0.2			

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

				valeurs régle frança (11/01/	ises	Valeurs guides OMS
Cubatana	D71 F	D72F	072		eau	eau
Substance	PZ1F	PZ2F	PZ2	eau brute	potable	potable
1,3-dichloropropène	<0.2	<0.2	<0.2			
tétrachloroéthylène	0.38	<0.1	<0.1		10 (3)	40
tétrachlorométhane	<0.1	<0.1	<0.1			4
1,1,1-trichloroéthane	1.0	<0.1	<0.1			2000
trichloroéthylène	0.91	0.15	<0.1		10 (3)	20
chloroforme	<0.1	<0.1	<0.1			300
chlorure de vinyle	<0.1	<0.1	<0.1		0,5	0,3
hexachlorobutadiène	<0.2	<0.2	<0.2			
bromoforme	<0.2	<0.2	<0.2			100
POLYCHLOROBIPHENYLS (PCB)						
PCB 28	<0.01	<0.01	<0.01			
PCB 52	<0.01	<0.01	<0.01			
PCB 101	<0.01	<0.01	<0.01			
PCB 118	<0.01	<0.01	<0.01			
PCB 138	<0.01	<0.01	<0.01			
PCB 153	<0.01	<0.01	<0.01			
PCB 180	<0.01	<0.01	<0.01			
PCB totaux (7)	<0.07	<0.07	<0.07			
HYDROCARBURES TOTAUX						
fraction C10-C12	<5	<5	<5			
fraction C12-C16	<5	<5	<5			
fraction C16 - C21	<5	<5	<5			
fraction C21 - C40	<5	<5	<5			
hydrocarbures totaux C10-C40	<20	<20	<20	1000		

^{(1):} somme fluoranthène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, benzo(g,h,i)pérylène, indéno(1,2,3-cd)pyrène)

Tableau 15 : Résultats des analyses d'eaux souterraines (en μg/l)

Les teneurs en HCT, HAP et PCB dans les eaux souterraines sont inférieures aux limites de quantification sur tous les piézomètres.

On note la présence de xylènes (para et méta) sur les trois piézomètres à des concentrations comprises entre 0,43 et 0,55 μ g/l.

Ces teneurs en xylènes sont toutefois inférieures à la valeur seuil fixée par l'OMS dans l'eau potable (500 μ g/l).

⁽²⁾ somme cis -DCE et Trans-DCE, (3) somme Tétrachloroéthylène et Trichloroéthylène

Antea Group	

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

La présence de COHV est mesurée sur les deux piézomètres localisés sur l'emprise de l'ancienne fonderie : PZ1F et PZ2F.

Les composés mesurés sont :

- le cis 1-2-dichloroéthène et le trichloroéthylène sur PZF1 et PZF2,
- le 1,1-dichloroéthène, le trans 1,2-dichloroéthylène, le tétrachloroéthylène et le 1,1,1-trichloroéthane sur PZF1.

La concentration totale en COHV atteint 3,07 μ g/l au PZF1 et 0,34 μ g/l au PZF2.

Ces teneurs sont inférieures aux valeurs seuils pour l'eau potable fixées par la réglementation française ou l'OMS quand elles existent.

4.5. Caractérisation des remblais

4.5.1. Observations

Les fosses remblayées localisées au droit de l'ancienne fonderie ainsi que les tas de remblais et déchets localisés au droit de l'ancienne papeterie ont fait l'objet d'un diagnostic visuel par le biais de prélèvements à la pelle mécanique.

Les fiches descriptives sont rassemblées en annexe 8. Les observations sont reprises dans le tableau 18.

Les volumes de déblais concernés sont mentionnés à titre indicatif sur la base de l'emprise des dépôts et des fosses (cf. tableaux 16 et 17 ci-après).

Repère sur la carte	Profondeur	Volume estimé
E	1,5 m	150 m ³
F1	1,8 m	750 m ³
F2	2 m	1200 m ³
F3	1,5 m	350 m ³
G	1 m	50 m ³
Volume total estimé	2500 m ³	

Tableau 16 : Estimation du volume de déblais dans les fosses remblayées de l'ancienne fonderie

Austra Corre	
Antea Group	

Repère sur la carte	Hauteur moyenne estimée	Volume estimé
Α	3 m	900 m ³
В	1 m	100 m ³
C1, C2	2 m	400 m ³
C3	1 m	100 m ³
C4	1 m	100 m ³
C5, C6	2 m	1000 m ³
D1, D2, D3	2 m	1000 m ³
D4	2 m	400 m ³
D5	2 m	700 m ³
Volume total estimé		4700 m ³

Tableau 17 : Estimation du volume des dépôts sur l'emprise de l'ancienne papeterie

Repère sur	Rapport A64585/A Descriptif de la fosse et prélèvement	Prise de vue
la carte	Descriptii de la losse et preleveillent	riise de vae
E Prof. :1,5 m	Gravats de béton puis ferrailles de 0,5 à 0,6 m. Sables noirâtre puis sable argileux marron à noirâtre. Echantillon moyen prélevé.	
F1 Prof. : 1,8m	Gravats de béton jusqu'à 0,3 m Remblais de démolition limoneux noirâtre avec brique, béton, carrelage. Echantillon moyen prélevé.	
F2 Prof. : 2m	Gravats de béton jusqu'à 0,1 m Remblais noirâtre avec gravats de béton et ferrailles, humide à 2m. Echantillon moyen prélevé.	
F3 Prof. : 1,5m	Gravats de béton jusqu'à 0,2 m Sable fin gris à beige, humide. Echantillon moyen prélevé.	
G Prof. : 1m	Gravats de béton jusqu'à 0,25 m Fosse en eau remplie de débris de démolition.	

Tableau 18 : Descriptif des fosses remblayées (ancienne fonderie)

Repère sur la carte	Descriptif du dépôt et prélèvement	Prise de vue
A	Bois, ferraille, caoutchouc, laine de verre, plastique, briques, résidus poudreux noirâtres, plâtre. Echantillon moyen A1+A2.	
В	Pneu, bande caoutchouc, ferraille, laine de verre rose.	
C1	Limons noirâtres avec gravats de béton (50%). Echantillon C1.	
C2	Limons noirâtres avec gravats de béton (50%)	
C3	Sable graveleux brun avec cailloux calcaires et silex. Echantillon moyen C3+C5	

	Rapport A64585/A	
C4	Sable grisâtre. Echantillon C4	
C5	Sable beige à roux et silex. Echantillon moyen C3+C5	
C6	Ferraille, plâtre, bois, plastique	
D1	Limon noir avec blocs rocheux carrés gris, ferraille, béton, plastique.	
D2	Limon noir avec blocs rocheux carrés gris, ferraille, béton, plastique. Echantillon moyen D1+D2.	THE STATE OF THE S
D3	Blocs de béton et ferrailles.	
D4	Sable noirâtre avec ferrailles, béton, PVC, plâtre. Echantillon D4.	

Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Limon	brun	et	résidu	ıs	de	for	nderie
noirâtr	e ave	c b	éton,	fe	errail	le,	bois,
plastiqu	ue.						
Echanti	illon D5	5.					

D5

Tableau 19 : Descriptifs des dépôts de remblais (ancienne papeterie)

4.5.2. Prélèvements

Les fosses ainsi que les dépôts de remblais ont fait l'objet de prélèvements à la pelle mécanique.

Un échantillon moyen a été prélevé sur toute la hauteur des fosses E, F1, F2 et F3 de l'ancienne fonderie.

Les dépôts de remblais au droit de l'ancienne papeterie ont fait l'objet de prélèvements moyens au droit des points A1, A2, C1, C3, C5, C4, D1, D2, D4 et D5.

La localisation des points de prélèvements est indiquée sur le plan de la figure 4.

_	Antea Group
,	ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Figure 4 : Localisation des prélèvements de remblais à la pelle mécanique

Antea Group	

4.5.3. Résultats des analyses de remblais

Les 11 échantillons suivants ont fait l'objet de tests d'acceptabilité en Installation de Stockage de Déchets Inertes selon l'arrêté du 28/10/2010 par le laboratoire Alcontrol :

- E1, F1, F2 et F3 prélevés au droit des fosses remblayées au droit de l'ancienne fonderie,
- C1, C4, D4, D5, un mélange des échantillons A1 et A2, un mélange des échantillons C3 et C5 et un mélange des échantillons D1 et D2, prélevés sur les différents dépôts de matériaux présents sur l'ancienne papeterie.

Les bordereaux d'analyses sont rassemblés en annexe 9 et les résultats sont repris dans les tableaux de l'annexe 10.

Un tableau de synthèse des résultats est repris ci-dessous.

Zone	Echantillon	Conformité à l'ISDI	Paramètres non conformes	
Fonderie	E1	Non conforme	Dépassements en COT sur brut, molybdène, sélénium, fraction soluble, fluorures et sulfates sur éluat.	
	F1	Non conforme	Dépassements en HCT sur brut.	
	F2	Non conforme	Dépassements en PCB totaux et HCT sur brut.	
	F3	Conforme		
Papeterie A1+A2		Non conforme	 Dépassements en COT et HCT sur bru molybdène, fraction soluble et sulfate sur éluat. 	
	C1	Non conforme	Dépassements en HCT sur brut.	
	C3+C5	Non conforme	Dépassements en fraction soluble et sulfates sur éluat.	
	C4	Conforme		
	D1+D2	Non conforme	Dépassements en PCB sur brut, molybdène, fraction soluble et sulfates sur éluat.	
	D4	Non conforme	Dépassements en HCT sur brut.	
	D5	Non conforme	Dépassements en COT et PCB sur brut	

Tableau 20 : Tableau de synthèse des résultats des tests d'acceptabilité

Antea Group	
Antea Group	

FTABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Fouilles remblayées (ancienne fonderie)

Les résultats des prélèvements effectués au droit des fouilles E1, F1 et F2 sont non conformes aux valeurs limites de l'arrêté du 28 octobre 2010 fixant les conditions d'admission en Installation de Stockage de Déchets Inertes.

Les résultats des analyses sont conformes pour le prélèvement réalisé au droit de la fouille F3.

Dépôts de remblais (ancienne papeterie)

Les résultats du prélèvement moyen sur C4 est conforme aux valeurs limites de l'arrêté du 28 octobre 2010.

La teneur en fraction soluble sur éluat de l'échantillon C4 est supérieure à la valeur limite de l'arrêté (6 780 mg/kg MS mesuré pour une valeur limite fixée à 4 000 mg/kg MS), mais les teneurs en sulfates et chlorures de l'échantillon sont inférieures aux valeurs limites de l'arrêté : l'échantillon est donc jugé conforme.

En effet, l'arrêté du 28 octobre 2010 précise que si le déchet ne respecte pas au moins une des valeurs fixées pour les chlorures, les sulfates ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées aux chlorures et aux sulfates, soit celle associée à la fraction soluble.

Les résultats des prélèvements A1+A2, C1, C3+C5, D1+D2, D4 et D5 sont non conformes aux valeurs limites de l'arrêté du 28 octobre 2010.

Les résultats des tests d'acceptabilité sont illustrés par la figure 5 de la page suivante.

Une recherche qualitative d'amiante par détection de 6 types de fibres (chrysotile, amosyte, crocidolyte, anthophyllite, trémolyte, actinolyte) a été effectuée sur les 3 échantillons suivants :

- un mélange des échantillons A1 + A2,
- un mélange des échantillons D1 + D2,
- l'échantillon D5.

Les analyses n'ont pas détecté de fibres d'amiante sur les 3 échantillons.

 Antea Group	

Figure 5 : Résultats des tests d'acceptabilité en ISDI

Antea Group	

4.6. Autres observations

Il existe un stockage de fûts contenant des produits dans l'un des anciens bâtiments de la papeterie.

Ce stockage est constitué d'environ une vingtaine de futs de 190 kg (ARKOPAL 3113), une dizaine de fûts de 70 kg (ARKOFIX 3344) et des futs de 200 l diverses. A l'exception des fûts d'ARKOPAL 3113, ils sont en mauvais état (cf. photos cidessous).

	_
Antos	Group
Antea	GIOUD

5. Interprétation des résultats et commentaires

5.1. Sols au droit des sondages S1 à S15

5.1.1. Composés organiques

Les composés organiques mis en évidence sont notamment :

- les hydrocarbures C10-C40 principalement représentés par des fractions carbonées peu volatiles (C21-C40) dans les remblais au droit des sondages S4 (1800 mg/kg-MS), S11 (400 mg/kg-MS) et S12 (1400 mg/kg-MS). Les valeurs en HCT C10-C40 au droit des sondages S4 et S12 sont supérieures à la limite d'acceptabilité en installation de stockage de déchets inertes (ISDI) mais inférieure à la valeur guide d'acceptation en centre de stockage de déchets non dangereux (2 000 mg/kg-MS). Ces 3 sondages sont localisés au droit d'anciens ateliers de production : noyautage (S4), grenaillage (S11) et moulage (S12).
- les HAP (43 mg/kg-MS) au sondage S7 localisé à proximité d'une ancienne cuve enterrée d'hydrocarbures ou d'huiles usagées. La concentration totale en HAP est toutefois inférieure à la limite d'acceptabilité pour les installations de stockage de déchets inertes (50 mg/kg-MS),
- le benzène au sondage S4 (0,07 mg/kg-MS) et le toluène aux sondages S4 (0,14 mg/kg-MS), S11 (0,06 mg/kg-MS) et S13 (0,07 mg/kg-MS). L'ensemble des résultats en BTEX reste inférieure à la limite d'acceptabilité pour les installations de stockage de déchets inertes (6 mg/kg-MS),
- le **tétrachloroéthylène** à une concentration égale au seuil de quantification de 0,02 mg/kg-MS au sondage **S13**, le **1,1,1-Trichloroéthane** à de faibles concentrations aux sondages **S1** (0,06 mg/kg-MS), **S2** (0,06 mg/kg-MS) et **S13** (0,19 mg/kg-MS) et le **trichloroéthylène** au sondage **S1** (0,19 mg/kg-MS).

Les sondages impactés en produits organiques (S1, S2, S4, S11, S12, S13) sont majoritairement localisés dans la partie centrale de l'ancienne fonderie.

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Des traces de composés aromatiques volatils (toluène, éthylbenzène et xylènes principalement) avaient été mesurées aux sondages s1, s4, s5 et s11 lors de la campagne de 2002 (cf. figure 6).

Des concentrations plus élevées (somme des CAV égale à 28,2 mg/kg) ainsi qu'une valeur en hydrocarbures totaux C10-C40 égale à 4500 mg/kg-MS avaient également été mesurées au sondage s10 de 1 à 2 m de profondeur. Les sondages S5 et S8 localisés à proximité n'ont pas révélés d'impact pour ces substances.

Une concentration en HCT C10-C40 égale à 3500 mg/kg avait également été mesurée au sondage s1 de 2 à 3 m de profondeur à proximité du bâtiment toujours existant (difficultés d'accès pour réaliser des sondages complémentaires).

5.1.2. Dioxines et furannes

Les résultats en dioxines et furannes sont compris entre le seuil de quantification à 2 ng/kg-MS et 23 ng/kg-MS pour une fourchette basse et entre 5,8 ng/kg-MS et 24 ng/kg-MS pour une fourchette haute.

Le rapport BRGM/RP-56132-FR du BRGM de mars 2008 propose des valeurs de bruit de fond anthropique en dioxines et furannes dans les sols³.

Equivalent toxique en ng TEQ-OMS-97 kg-MS	Médiane	90 % des valeurs	Nombre
		sont inférieures à	d'analyses
Zones rurales (toutes anciennetés) et zones	1,3	3,2	138
urbaines n'ayant pas connu le fonctionnement			
d'un incinérateur au delà des 10 dernières			
années			
Zones urbaines et industrielles ayant connues le	4,7	20,8	58
fonctionnement d'un incinérateur au-delà des			
10 dernières années			
Cas particuliers	63,2	82,7	14
(28-31 ans / Equivalent toxique > 30)			

Les résultats, pour la fourchette haute, sont représentatifs d'une zone urbaine et industrielle. La valeur obtenue en S1 (23 à 24 ng/kg-MS) est légèrement supérieure à la valeur à 90 %.

³ Dioxines/furannes dans les sols français : second état des lieux, analyses 1998-2007. Rapport final. BRGM/RP-56132-FR. Mars 2008.

Antea Group	
Antea Group	

FTABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

5.1.3. Eléments traces métalliques

Pour l'ensemble des sondages, les résultats en en chrome sont inférieurs au bruit de fond local. Pour 6 des 15 sondages (S1, S2, S3, S6, S11 et S14), les résultats en ETM sont inférieurs au bruit de fond.

Les anomalies en éléments traces métalliques sont principalement observées au droit des sondages :

- S4, S9 et S12 pour le cuivre,
- S5 et S15 pour le cuivre et le plomb,
- S7 pour le plomb,
- S8 pour le cadmium, le cuivre, le nickel et le zinc,
- S10 pour l'arsenic, le cuivre, le mercure, le plomb et le zinc.

La campagne de 2002 avait également mis en évidence des anomalies en éléments traces métalliques (arsenic, plomb, chrome, cuivre, mercure) au droit des sondages s3, s4, s5, s7 et s11 (cf. figure 6).

5.2. Air du sol

Les résultats de l'analyse des prélèvements d'air du sol au droit des piézomètres gaz PG1 et PG2 conduit à des résultats inférieurs aux limites de quantification à l'exception d'une concentration de 385 $\mu g/m^3$ en 1,1,1-Trichloroéthane au PG2. Ce composé avait également été mesuré à une concentration de 178 $\mu g/m^3$ en janvier 2008.

Au regard des valeurs de risques associées à ce composé dans le cadre de l'Evaluation Quantitative des Risques Sanitaires réalisée pour un usage de bureaux (Rapport A52389 de décembre 2008), cette concentration 2 fois plus élevée ne conduit pas à une remise en cause de l'EQRS qui concluait à un usage compatible.

5.3. Eaux souterraines

Le contrôle de la qualité des eaux souterraines au droit de 3 piézomètres PZ1F, PZ2F et PZ2 indique notamment :

- la présence d'éthylbenzène à une concentration égale au seuil de quantification au piézomètre PZ2 (0,2 μg/l),
- la présence de xylènes à de faibles concentrations sur les 3 ouvrages (0,43 au PZ1F à 0,55 μg/l au PZ2),
- la présence de COHV sur les piézomètres PZ1F et PZ2F avec une concentration totale en COHV égale à 3,07 μg/l au PZ1F, localisé au centre de l'ancienne fonderie et 0,34 μg/l localisé à l'aval, à proximité de la Seine.

 Antea Group	

En 2002, des faibles concentrations en composés aromatiques volatils avaient été mesurées au piézomètre PZ2F (somme des CAV égale à 2,2 μg/l et concentration en xylènes égale à 1,3 μg/l).

Le tétrachloroéthylène recherché sur les 3 anciens piézomètres avait été mesuré à 0,5 μg/l sur l'ancien PZ1, aujourd'hui disparu et n'avait pas été quantifié sur les autres ouvrages (résultats inférieurs à la limite de quantification de 0,5 μg/l).

En ce qui concerne les piézomètres localisés sur l'ancienne papeterie, les résultats en COHV sont inférieurs à la limite de quantification de 0,5 μ g/l depuis le début du suivi (janvier 2008).

Les niveaux de concentration en CAV et COHV dans la nappe restent stables et inférieurs aux référentiels de qualité pour l'alimentation en eau potable.

5.4. Remblais

Les tests d'acceptabilité réalisés sur des échantillons moyens prélevés au droit des fosses remblayées de l'ancienne fonderie et des dépôts de matériaux sur l'emprise de l'ancienne papeterie sont majoritairement non conformes aux critères d'admissibilité en Installation de Stockage de Déchets Inertes avec respectivement 3 échantillons sur 4 et 6 échantillons sur 7 non conformes.

Les dépassements sont majoritairement liés à des substances toxiques puisqu'ils concernent les hydrocarbures totaux ou les PCB pour 7 des 9 échantillons non conformes ainsi que les métaux (molybdène, sélénium) pour 1 échantillon. Les volumes concernés représentent globalement 2100 m³ pour les fouilles E1, F1 et F2 et 3400 m³ pour les dépôts de remblais au droit de l'ancienne papeterie.

Les dépassements liés exclusivement à la fraction soluble ou aux sulfates concernent l'échantillon C3 + C5, soit un volume global de 1100 m³.

Seuls les échantillons F3 (fouille d'un volume estimé à 350 m^3) et C4 (tas d'un volume estimé à 100 m^3) sont conformes.

La recherche d'amiante n'a pas mis en évidence la présence de fibres parmi les 6 recherchées (chrysotile, amosyte, crocidolyte, anthophyllite, trémolyte, actinolyte).

 Antea Group	

Figure 6 : Carte de synthèse des résultats

Antea Group	
Antica Group	

6. Recommandations

Le diagnostic de l'état de pollution des sols au droit des anciennes fonderies de Vernon et de l'ancienne papeterie SMURFIT a consisté en la réalisation :

- de 15 sondages et analyses d'échantillons de sols répartis sur l'emprise de l'ancienne fonderie,
- de 2 prélèvements d'air du sol sur 2 piézomètres gaz existant sur l'emprise de la papeterie,
- de 3 prélèvements d'eau souterraine sur 1 piézomètre exécuté au centre de la fonderie (PZF1) et sur 2 piézomètres déjà existants (PZF2 et PZ2),
- de prélèvements à la pelle mécanique au droit des fosses remblayées (fonderie) et des dépôts de matériaux (papeterie).

1- Qualité des sols et du sous-sol :

Ancienne fonderie:

Pour ce qui concerne l'ancienne fonderie, la présence d'hydrocarbures représentés par des fractions peu volatiles, est mesurée localement au droit des sondages S4, S11 et S12 implantés à l'emplacement d'anciens ateliers de production ainsi que des HAP à proximité d'une ancienne cuve enterrée.

Les composés aromatiques volatils et les COHV sont mesurés à de faibles concentrations dans la partie centrale de l'ancienne fonderie à proximité des fosses remblayées.

Les anomalies en éléments traces métalliques sont présentes, de façon plus diffuse, sur plus de la moitié des sondages (8 sur 15). Elles concernent majoritairement le cuivre.

Les remblais (vraisemblablement des matériaux de démolition des bâtiments existants) présents dans les anciennes caves sont principalement des remblais noirâtres comprenant des débris de démolition. Ils montrent des impacts en HCT et/ou PCB pour 2 échantillons sur les 4 analysés ainsi que des dépassements par rapport aux autres critères d'acceptabilité en ISDI pour 1 échantillon.

Ante	ea Group
Aitte	ea dioup

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) – Diagnostic de l'état de pollution des sols Rapport A64585/A

Ancienne papeterie :

Les dépôts de matériaux répartis sur l'emprise de l'ancienne papeterie sont représentés par :

- des déchets entreposés à l'intérieur d'un des bâtiments (bois, ferrailles, caoutchouc, laine de verre, plastique, briques, résidus poudreux noirâtres, plâtres, pneus, etc.),
- des remblais sableux et des débris de démolition (ferrailles, béton, bois, etc.)
 stockés à l'extérieur.

Ces dépôts sont vraisemblablement issus du démantèlement de la fonderie. Il n'est toutefois pas exclu qu'une partie ait une origine extérieure au site.

Les tests d'acceptabilité en ISDI sont non conformes sur 6 échantillons sur 7, principalement en raison des hydrocarbures totaux et des PCB. La recherche d'amiante effectuée sur 5 échantillons s'est révélée négative.

Les résultats de l'analyse des prélèvements d'air du sol sont inférieurs aux limites de quantification à l'exception d'une concentration de 385 $\mu g/m^3$ en 1,1,1-Trichloroéthane au PG2. Ce composé avait également été mesuré à une concentration de 178 $\mu g/m^3$ en janvier 2008. Au regard des résultats de l'Evaluation Quantitative des Risques Sanitaires réalisée en 2008, cette concentration 2 fois plus élevée ne conduit pas à une remise en cause de l'EQRS qui concluait à une compatibilité du site de l'ancienne papeterie pour un usage de bureaux.

2- Eaux souterraines:

Les eaux souterraines présentent de faibles concentrations en éthyllbenzène et/ou xylènes sur les 3 ouvrages ainsi qu'en COHV sur les piézomètres localisés au droit de l'ancienne fonderie.

Les niveaux de concentration sont inférieurs aux référentiels de qualité pour l'alimentation en eau potable et restent stables par rapport aux résultats de la campagne précédente.

3- Recommandations vis-à-vis des risques sanitaires :

Compte tenu de la volatilité des substances détectées et des risques d'inhalation de substances gazeuses dans le cadre d'un projet d'aménagement futur, il conviendrait de réaliser des sondages complémentaires et des prélèvements d'air du sol, notamment, dans la partie centrale de l'ancienne fonderie à proximité des fosses remblayées.

Antea Group	
Antea Group	

Ces reconnaissances pourraient être associées à des calculs de risques sanitaires afin de tester différents scénarios d'usage du site, pour lequel, le projet d'aménagement n'est pas encore connu.

Pour ce qui concerne, les éléments traces métalliques présents dans les sols, notamment le cuivre sur 8 sondages, et les dioxines et furannes (sondage S1), les risques sanitaires potentiels liés à l'inhalation et à l'ingestion de poussières du sol seront maîtrisés si les sols sont recouverts (terre végétal, dalle, enrobé ...) et s'il n'est pas prévu dans l'aménagement futur de potagers individuels. Dans le cas contraire, les calculs de risques sanitaires devront aussi prendre en compte ce type d'exposition.

4- Recommandations vis à vis des aménagements prévus :

Sous réserve que des incompatibilités sanitaires ne soient mises en évidence par une EQRS, on privilégiera des aménagements qui laisseront les terres en place afin de mobiliser au minimum, les substances polluantes dans l'environnement, et de ne pas évacuer de terres hors site, à l'origine de coûts de traitement potentiellement élevés.

Toutefois, si le projet devait conduire à l'évacuation de remblais hors du site, on s'attachera à caractériser ces zones en amont afin de définir les filières d'élimination.

Concernant les dépôts de déchets et remblais sur l'emprise de l'ancienne papeterie, la plupart devront être éliminés vers des centres agréés, on examinera toutefois la possibilité de laisser les moins impactés (dépassements pour les sulfates ou la fraction soluble) sur le site dans des aménagements spécifiques (sous forme de cordons, sous des voiries, etc...) en accord avec les caractéristiques du projet et le PPRI du secteur.

On veillera également à la compatibilité des terres et des eaux avec les bétons ainsi qu'aux éventuels problèmes géotechniques liés à l'existence des caves remblayées (tassement, point dur ...).

Enfin, notons qu'il reste à l'intérieur d'un bâtiment de l'ancienne papeterie, des bidons usagés, contenant des produits, pour lesquels il faudra prévoir une élimination par une filière agrée.

Antea Group	

Observations sur l'utilisation du rapport

Ce rapport, ainsi que les cartes ou documents, et toutes autres pièces annexées constituent un ensemble indissociable ; en conséquence, l'utilisation qui pourrait être faite d'une communication ou reproduction partielle de ce rapport et annexes ainsi que toute interprétation au-delà des énonciations d'Antea Group ne saurait engager la responsabilité de celle-ci. Il en est de même pour une éventuelle utilisation à d'autres fins que celles définies pour la présente prestation.

Il est rappelé que les résultats de la reconnaissance s'appuient sur un échantillonnage et que ce dispositif ne permet pas de lever la totalité des aléas liés à l'hétérogénéité du milieu naturel ou artificiel étudié.

Antea Group réalise ses prestations dans le respect des principes de la norme AFNOR 31-620, de septembre 2003, aujourd'hui en attente de révision. Cette norme constitue le support du Référentiel de labellisation QUALIPOL, établi par l'UPDS, dont Antea Group est membre. Antea Group applique les recommandations de la politique de gestion des sites et sols pollués du MEEDDAT, initiée en février 2007 et exprimée dans les circulaires de 2007. Les prestations prévues ci-dessus entrent dans la codification QUALIPOL de l'annexe 11.

Antea Group a obtenu le certificat de labellisation QUALIPOL le 4 novembre 2008.

Anton Croup	
 Antea Group	

Annexe 1

Références des rapports consultés

(1 page)

 Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Références des rapports consultés

Fonderie de Vernon à Vernon (27). Etude historique et ESR. Rapport ANTEA A23245. 2001

Fonderie de Vernon à Vernon (27). Liquidation judiciaire. Etude historique et de vulnérabilité. Pré-évaluation simplifiée des risques. Rapport ANTEA A23422. 2001

Liquidation judiciaire des anciennes fonderies de Vernon à Vernon (27). Reconnaissance du sous-sol (étape B) et évaluation simplifiée des risques. Rapport ANTEA A26751. Avril 2002

SMURFIT KAPPA. Etude historique et documentaire de la papeterie de Vernon (Eure). Etape A de l'Evaluation Simplifiée des Risques (ESR). Février 2007. Rapport ANTEA A43979/B.

SMURFIT KAPPA. Papeterie de VERNON (Eure). Etape B de l'Evaluation Simplifiée des Risques. Diagnostic de la qualité des sols et des eaux souterraines. Mai 2007. Rapport ANTEA A46046/A.

SMURFIT KAPPA. Papeterie de VERNON (Eure). Investigations complémentaires. Compte rendu des travaux. Février 2008. Rapport ANTEA A49655/A.

SMURFIT KAPPA. Papeterie de VERNON (Eure). Investigations complémentaires. Compte rendu des travaux. Février 2008. Rapport ANTEA A49655/A.

SMURFIT KAPPA PAPIERS RECYCLES DE FRANCE. Papeterie de VERNON (Eure). Réalisation de sondages complémentaires et évaluation quantitative des risques sanitaires. Décembre 2008. Rapport ANTEA A52389/A.

SMURFIT KAPPA PAPIERS RECYCLES DE FRANCE. Papeterie de VERNON (Eure). Rapport de synthèse des investigations réalisées. Plan de gestion. Mai 2009. Rapport ANTEA A520027/D.

 Antea Group	

Annexe 2

Prises de vue des travaux de reconnaissance

(1 page)

 Antea Group	

Annexe 3

Relevé des points de sondages (Cabinet GEOMAT)

(1 page)

Anton Cana	
 Antea Group	

Annexe 4

Fiches de prélèvement des échantillons de sols

(15 pages)

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux
76420 BIHOREL Responsable du projet : C.DUBOST

Tél : 02 32 76 69 60 Début de campagne : 21/09/2011

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S1

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.2	Gravats		
0.2 - 2.4	Remblais sableux noirâtre avec résidus de fonderie	0 - 1.0	-
	Refus à 2.4 m	1.0 - 2.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax :
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S2

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 0.3	Remblais sableux marron	0 - 1.0	-
0.3 - 3.0	Argile sableuse marron humide à 2.8 m		
		1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S3

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 3.0	Argile sableuse marron	0 - 1.0	-
		1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)		

Agence Paris Centre Normandie Projet n° NIEP110012

Avenue des Hauts Grigneux

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S4

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.05	Dalle béton		
0.05 - 1.1	Remblais sableux et silex	0 - 1.0	-
1.1 - 3.0	Argile marron sableuse avec silex (20%)		
3.0 - 3.6	Sable et silex humides	1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux
76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

1 ax . 02 32 70 09 03 1 m de campagne . 23/09/2011

Préleveur(s) F.BARBAULT N° station S5

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.05	Dalle béton		
0.05 - 0.5	Remblais argileux sableux brun foncé	0 - 1.0	-
0.5 - 1.0	Argile sableuse marron		
1.0 - 3.0	Sable argileux beige	1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012

Avenue des Hauts Grigneux

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S6

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 1.5	Sable fin beige	0 - 1.0	-
1.5 - 3.4	Sable gris argileux humide avec odeur HC		
		1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S7

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.5	Remblais sablo argileux noirâtre		
0.5 - 1.4	Argile marron limoneuse	0 - 1.0	-
1.4 - 2.0	Argile limoneuse		
2.0 - 3.2	Sables argileux beige et silex (30%) humide à 2.5m	1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux
76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S8

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 0.3	Remblais sableux noirâtre	0 - 1.0	-
0.3 - 3.0	Argile sableuse marron humide à 2.0 m		
		1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S9

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.1	Dalle béton		
0.1 - 1.2	Remblais noirâtre avec résidus de fonderie	0 - 1.0	-
1.2 - 3.0	Argile marron		
		1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)		

Adresse

FICHE DE PRELEVEMENT : SOL

Paris Centre Normandie Projet n° Agence NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon

Antea Group ROUEN Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

Tél: 02 32 76 69 60 Début de campagne : 21/09/2011 Fax: 02 32 76 69 63 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S10

21/09/2011 Géoprobe Date/Heure Outils

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 1.0	Remblais sablo argileux avec résidus de fonderie (20%) briques (5%)	0 - 1.0	-
2.0 - 2.9	Argile marron limoneuse	1.0 - 2.0	-
		2.0 - 3.0	

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S11

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.05	Dalle béton		
0.05 - 2.0	Remblais noirâtre poudreux, résidus de fonderie	0 - 1.0	-
	Refus à 2.0 m	1.0 - 2.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux
76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S12

Profondeur (m)	Description	Profondeur prélevée (m)	
0 - 0.4	Dalle béton		
0.4 - 2.4	Remblais de déconstruction (briques/béton)	0 - 1.0	-
	Refus à 2.4m	1.0 - 2.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux
76420 BIHOREL Responsable du projet : C.DUBOST

Tél: 02 32 76 69 60 Début de campagne: 21/09/2011

Fax: 02 32 76 69 63 Fin de campagne: 23/09/2011

Préleveur(s) F.BARBAULT N° station S13

Profondeur (m)	Description		rofondeur élevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton			
0.15 - 2.0	Remblais limoneux noirâtre et mâchefer		0 - 1.0	-
2.0 - 3.0	Argile beige à marron légèrement sableuse			
		1	1.0 - 2.0	-
		2	2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon
Adresse Antea Group ROUEN

Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S14

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 0.5	Remblais sableux gris	0 - 1.0	-
0.5 - 2.5	Argile grise		
2.5 - 3.2	Argile sableuse grise et humide	1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence Paris Centre Normandie Projet n° NIEP110012

Intitulé : EPFN - Diagnostic Fonderie Vernon

Adresse Antea Group ROUEN
Horizon 2000 - Mach 5 Lieu: VERNON (27)

Avenue des Hauts Grigneux

76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 21/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station S15

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.15	Dalle béton		
0.15 - 1.0	Remblais sableux noirâtre avec 20% silex 10% briques	0 - 1.0	-
1.0 - 2.0	Limons noirâtres humide légèrement argileux		
2.0 - 3.4	Argile marron grise	1.0 - 2.0	-
		2.0 - 3.0	-

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)			

Amton Cun.un		
 Antea Group	_	
	•	

Annexe 5

Fiches de prélèvement des échantillons de gaz du sol

(2 pages)

FICHE DE PRELEVEMENT DE GAZ

Désignation du point

PG 1

N° du projet : NIEP110012

Intitulé : EPFN - Diagnostic ancienne fonderie de Vernon

Commune: VERNON (27)

Responsable de projet : C.DUBOST Prélevé le : 11/10/2011

Opérateur(s) ANTEA: F.BARBAULT Entreprise de pompage : ANTEA Niveau piézométrique : m/sol Profondeur de l'ouvrage : 1.1 m/repère Nature de l'étanchéité : ciment Diamètre int. de l'ouvrage : 50 mm Position de l'aspiration : (m / sol) 8.0 Volume de l'ouvrage : 2.0 litres Prélèvement sur support : Charbons actifs, tube hopkalite Volume minimal à purger : 10 litres Profondeur des crépines : (m / repère) à Outil de purge : pompe Zambelli AIR Outil de prélèvement : pompe Zambelli AIR

Environnement du point de prélèvement : usine smurfit

Paramètres mesurés in situ

N° échantillon :

Support	Temps de pompage	Débit de pompage (I/mn)	Volume prélevé (en litres)	Echantillon	CO2 (%)	O2 (%)	CH4 (%)	H2S (ppm)
	(mn)							
purge	20	0.50	10.0					
charbon	40	0.50	20.0					
charbon	40	0.50	20.0					

Observations:

Echantillons délivrés au laboratoire : le : 11/10/2011 (expédition)

Température extérieur : 15 °C

Température du sol :
Conditions météo : ensoleillé
Pression atmosphérique :

FICHE DE PRELEVEMENT DE GAZ

Désignation du point

PG₂

N° du projet: NIEP110012

Intitulé : EPFN - Diagnostic ancienne fonderie de Vernon

Commune: VERNON (27)

Responsable de projet : C.DUBOST Prélevé le : 11/10/2011

Opérateur(s) ANTEA: F.BARBAULT Entreprise de pompage : ANTEA Niveau piézométrique : m/sol Profondeur de l'ouvrage : 1.1 m/repère Nature de l'étanchéité : ciment Diamètre int. de l'ouvrage : 50 mm Position de l'aspiration : (m / sol) 8.0 Volume de l'ouvrage : 2.0 litres Prélèvement sur support : Charbons actifs, tube hopkalite Volume minimal à purger : 10 litres Profondeur des crépines : (m / repère) à Outil de purge : pompe Zambelli AIR Outil de prélèvement : pompe Zambelli AIR

Environnement du point de prélèvement : usine smurfit

Paramètres mesurés in situ

N° échantillon :

Support	Temps de pompage (mn)	Débit de pompage (I/mn)	Volume prélevé (en litres)	Echantillon	CO2 (%)	O2 (%)	CH4 (%)	H2S (ppm)
purge	20	0.50	10.0					
charbon	40	0.50	20.0					
charbon	40	0.50	20.0					

Observations:

Echantillons délivrés au laboratoire : le : 11/10/2011 (expédition)

Température extérieur : 15 °C

Température du sol :
Conditions météo : ensoleillé
Pression atmosphérique :

 Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Annexe 6

Coupe géologique et technique du piézomètre PZF1

(1 page)

NIEP110012 - EPFN - Diagnostic Fonderie Vernon (27)

N° Ouvrage : PZF1 Type de foreuse : **Entreprise Forage :** ENOMFRA Date début : 06/10/2011 Méthode Forage : Tricône

Réf. affaire : NIEP110012

Date Fin: Décrit par : Fl B Vérifié par : C.D

X (L. II):

Y (L. II): Dia. de fora. : 150 mm Prof. Fora.: 9.00 m Cote T. Nat.: **Z**: Niveau eau: 3.5 m Dia. d'équip. : 52 mm Prof. Equip.: 7.90 m

Prof (m)	Description	Coupe lithologique	Coupe technique	Commentaires
0 T	Dalle béton	0.2		Cimentation de 0 à 0.5 m
1 -	Remblais gris noirâtre			Tube plein 52 mm Bentonite de 0.5 à 1 m
3	Argile beige et silex			Niv. Piezo 3.5 m/sol Crépine 52 mm Massif filtrant de 1 à 9 m
8 -	Argile sableuse à silex	7		7.9 m 9 m

 Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Annexe 7

Fiches de prélèvement des échantillons d'eau souterraine

(3 pages)

FICHE DE PRELEVEMENT D'EAU

Désignation du point

PZF1

N° du projet : NIEP110012

Intitulé: EPFN - Diagnostic anciennes fonderie de Vernon

Commune: Vernon (27)

Responsable de projet : C.DUBOST Prélevé le : 11/10/2011

Opérateur(s) ANTEA: F.BARBAULT Niveau piézométrique : 4.15 m/repère Profondeur de l'ouvrage : 8.62 (m / repère) non influencé Nature du repère : tube métallique Diamètre int. de l'ouvrage : 80 mm Hauteur du repère / sol : 0.70 Volume de l'ouvrage : 22 litres (m) Cote du repère : (m) Volume minimal à purger : 112 litres relative absolue Outil de prélèvement : tube préleveur à usage unique Outil de purge : pompe 12V Position de l'aspiration : 5 à 8 (m / repère) Refoulement: au sol

Conditions météorologiques : nuageux

Environnement du point de prélèvement : Terrain en bord de Seine

Paramètres physico-chimiques mesurés in situ

N° échant	tillon :	PZF1					
Temps de pompage (mn)	Niveau dynamique (m / repère)	Débit de pompage (m³/h)	Volume purgé (en litres)	Aspect de l'eau	T °C	рН	Conduct. μS/cm.
20	5,10	0,4	133	Claire	14.10	7.14	1 474

Observations: Flottants : absent

Echantillons délivrés au laboratoire : Alcontrol le: 11/10/2011 (expédition)

Type de flaconnage : délivrés par le laboratoire conformément aux analyses demandées

Conditionnement, stabilisation, filtration des échantillons: selon conditionnement remis par le laboratoire

FICHE DE PRELEVEMENT D'EAU

Désignation du point

PZF2

N° du projet : NIEP110012

Intitulé : EPFN - Diagnostic anciennes fonderie de Vernon

Commune: Vernon (27)

Responsable de projet · C DUBOST Prélevé le · 11/10/2011

responsable de pro	Jet . C.L	00031	i icicve ic . i i	110120	• •
Opérateur(s) ANTEA	: F.BARE	AULT			
Niveau piézométrique :	2.48	m/repère	Profondeur de l'ouvrage :	5.6	(m / repère)
	non influe	ncé			_
Nature du repère : tube métallique		1	Diamètre int. de l'ouvrage :	80	mm
Hauteur du repère / sol :		0,51 (m)	Volume de l'ouvrage :	16	litres
Cote du repère :		(m)	Volume minimal à purger :	78	litres
relative	absolue				
Outil de prélèvement : tube préleveur à usage unique		r à usage unique	Outil de purge : pompe 12V		
Position de l'aspiration : 3 à 5 (m / repère)		(m / repère)	Refoulement : au sol		
Conditions météorologique	es . unade	AIIA			

conditions météorologiques : nuageux

Environnement du point de prélèvement : Terrain en bord de Seine

Paramètres physico-chimiques mesurés in situ

N° échant	tillon :	PZF2					
Temps de pompage (mn)	Niveau dynamique (m / repère)	Débit de pompage (m³/h)	Volume purgé (en litres)	Aspect de l'eau	T °C	рН	Conduct. µS/cm.
20	2,85	0,4	133	Claire	17.00	7,24	775

Observations: Flottants : absent

Echantillons délivrés au laboratoire : Alcontrol le: 11/10/2011 (expédition)

Type de flaconnage : délivrés par le laboratoire conformément aux analyses demandées

Conditionnement, stabilisation, filtration des échantillons: selon conditionnement remis par le laboratoire

FICHE DE PRELEVEMENT D'EAU

Désignation du point

PZ2

N° du projet : NIEP110012

Intitulé : EPFN - Diagnostic anciennes fonderie de Vernon

Commune: Vernon (27)

Responsable de projet : C.DUBOST Prélevé le : 11/10/2011

Opérateur(s) ANTEA: F.BARBAULT Niveau piézométrique : 3.88 m/repère Profondeur de l'ouvrage : 8.44 (m / repère) non influencé Nature du repère : tube métallique Diamètre int. de l'ouvrage : 80 mm Hauteur du repère / sol : 0.49 Volume de l'ouvrage : 23 litres (m) Cote du repère : (m) Volume minimal à purger : 115 litres relative absolue Outil de prélèvement : tube préleveur à usage unique Outil de purge : pompe 12V Position de l'aspiration : 4 à 8 (m / repère) Refoulement: au sol

Conditions météorologiques : nuageux

Environnement du point de prélèvement : Terrain en bord de Seine

Paramètres physico-chimiques mesurés in situ

N° échant	tillon :	PZ2					
Temps de pompage (mn)	Niveau dynamique (m / repère)	Débit de pompage (m³/h)	Volume purgé (en litres)	Aspect de l'eau	T °C	рН	Conduct. µS/cm.
20	4,5	0,4	133	Claire	14,6	7,10	753

Observations : Flottants : absent

Echantillons délivrés au laboratoire : Alcontrol le : 11/10/2011 (expédition)

Type de flaconnage : délivrés par le laboratoire conformément aux analyses demandées

Conditionnement, stabilisation, filtration des échantillons: selon conditionnement remis par le laboratoire

Antea Group	
 •	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Annexe 8

Fiches descriptives des remblais

(18 pages)

Agence

Paris Centre Normandie

FICHE DE PRELEVEMENT : SOL

Projet n° NIEP110012

Intitulé: EPFN - Diagnostic SOL

Adresse	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux		Vernon (27)	NURGE	
	76420 BIHOREL	Responsable	du projet : C.I	DOROST	
Tél:	02 32 76 69 60	Début de can	npagne : 23/09	9/2011	
Fax:	02 32 76 69 63		gne : 23/09/20		
Préleveur(s)	F.BARBAULT	N° station		Tas A	
Date/Heure	23/09/2011	Outils	P	elle mécaniqu	e
				D 6 1	Maguna DID
Profondeur (m)	Description			Profondeur prélevée (m)	Mesure PID (ppm)
	résidus poudreux noirâtres, platre.				
Observations (réc	cupération d'échantillons, justification du n	on respect du r	node opératoir	e, etc.)	

Paris Centre Normandie

Agence

FICHE DE PRELEVEMENT : SOL

Projet n°

Adresse Tél: Fax: Préleveur(s) Date/Heure	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL 02 32 76 69 60 02 32 76 69 63 F.BARBAULT	Début de ca	mpagne : 23/09/20	agne: 23/09/2011		
Profondeur (m)	Pneu, bande caoutchouc, feraille, laine de	verre rose		Profondeur prélevée (m)	Mesure PID (ppm)	
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoii	re, etc.)		

Paris Centre Normandie

Agence

FICHE DE PRELEVEMENT : SOL

Projet n°

Adresse Tél: Fax: Préleveur(s) Date/Heure	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL 02 32 76 69 60 02 32 76 69 63 F.BARBAULT 23/09/2011	Début de ca	Vernon (27) du projet : C.DUBOST npagne : 23/09/2011 agne : 23/09/2011 C1 Pelle mécanique		
Profondeur (m)	Description Limons noirâtres avec gravats bétons (50%)	6)		Profondeur prélevée (m)	Mesure PID (ppm)
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoii	re, etc.)	

Agence

Paris Centre Normandie

FICHE DE PRELEVEMENT : SOL

Projet n°

Adresse Tél: Fax: Préleveur(s) Date/Heure	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL 02 32 76 69 60 02 32 76 69 63 F.BARBAULT	Début de ca	Vernon (27) du projet : C.DUBOST npagne : 23/09/2011 agne : 23/09/2011 C2 Pelle mécanique		
Profondeur (m)	Description Limons noirâtres avec gravats bétons (50%)	o)		Profondeur prélevée (m)	Mesure PID (ppm)
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoii	re, etc.)	

Paris Centre Normandie

Agence

FICHE DE PRELEVEMENT : SOL

Projet n°

Adresse Tél: Fax: Préleveur(s) Date/Heure	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL 02 32 76 69 60 02 32 76 69 63 F.BARBAULT 23/09/2011	Début de ca	Vernon (27) du projet : C.DUBOST mpagne : 23/09/2011 agne : 23/09/2011 C3 Pelle mécanique		ie
Profondeur (m)	Description Sable graveleux brun avec cailloux calcair	es et silex		Profondeur prélevée (m)	Mesure PID (ppm)
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoii	re, etc.)	

Agence	Paris Centre Normandie	Projet n°	NIEP110012	antin COI	
Adresse	Antea Group ROUEN	Intitulé :	EPFN - Diagn	iostic SOL	
Adiesse	Horizon 2000 - Mach 5	Lieu:	Vernon (27)		
	Avenue des Hauts Grigneux		(= .)		
	76420 BIHOREL	Responsable	e du projet : C.l	DUBOST	
Tr.41 .	02 22 77 70 70	Dilant da sa	22/0	0/2011	
Tél : Fax :	02 32 76 69 60 02 32 76 69 63		mpagne : 23/0 pagne : 23/09/20		
Tax.	02 32 10 07 03	Till de camp	Jugne : 25/07/2	011	
Préleveur(s)	F.BARBAULT	N° station		C4	
Date/Heure	23/09/2011	Outils	F	Pelle mécaniqu	ie
		•			
Profondeur (m)	Description			Profondeur	Mesure PID
Troionacui (m)				prélevée (m)	(ppm)
	Sable grisâtre				
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoi	re, etc.)	

Agence	Paris Centre Normandie	Projet n°	NIEP110012	.: GOI	
Adresse	Antea Group ROUEN	Intitulé :	EPFN - Diagn	ostic SOL	
raresse	Horizon 2000 - Mach 5	Lieu:	Vernon (27)		
	Avenue des Hauts Grigneux		, ,		
	76420 BIHOREL	Responsable	e du projet : C.I	DUBOST	
Tél :	02 32 76 69 60	Début de ca	mpagne: 23/09	9/2011	
Fax:	02 32 76 69 63		pagne : 23/09/20		
Préleveur(s)	F.BARBAULT	N° station		C5	
r refeveur(s)	1.DARDAUL1	iv station		CJ	
Date/Heure	23/09/2011	Outils	P	elle mécaniqu	ie
	Т		-	Profondeur	Mesure PID
Profondeur (m)	Description			prélevée (m)	(ppm)
	Sable beige à roux et silex				
		. 1	1		
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératon	re, etc.)	

Agence	Paris Centre Normandie	Projet n° Intitulé :	NIEP110012 EPFN - Diagn	ostic SOL	
Adresse	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL	Lieu :	Vernon (27)		
Tél : Fax :	02 32 76 69 60 02 32 76 69 63		mpagne : 23/09/20		
Préleveur(s)	F.BARBAULT	N° station		C6	
Date/Heure	23/09/2011	Outils	F	Pelle mécaniqu	e
Profondeur (m)	Description			Profondeur prélevée (m)	Mesure PID (ppm)
	Feraille, platre, bois, plastique				
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoi	re, etc.)	

Agence

Paris Centre Normandie

FICHE DE PRELEVEMENT : SOL

Projet n°

Adresse Tél: Fax: Préleveur(s)	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL 02 32 76 69 60 02 32 76 69 63 F.BARBAULT	Début de ca Fin de camp N° station	EPFN - Diagn Vernon (27) e du projet : C.l mpagne : 23/0 pagne : 23/09/20	DUBOST 9/2011 011 D1	
Date/Heure	23/09/2011	Outils	F	Pelle mécaniqu	e
Profondeur (m)	Description			Profondeur prélevée (m)	Mesure PID (ppm)
	Limons noir avec blocs rocheux gris carrés	s, feraille, béta	on, plastique		
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoi	re, etc.)	

Paris Centre Normandie

Agence

FICHE DE PRELEVEMENT : SOL

Projet n°

Adresse Tél: Fax: Préleveur(s)	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL 02 32 76 69 60 02 32 76 69 63 F.BARBAULT	Début de ca	EPFN - Diagn Vernon (27) e du projet : C.l mpagne : 23/0 pagne : 23/09/20	DUBOST 9/2011	
Date/Heure	23/09/2011	Outils	F	Pelle mécaniqu	ie
Profondeur (m)	Description Limons noir avec blocs rocheux gris carrés	s, feraille, bét	on, plastique	Profondeur prélevée (m)	Mesure PID (ppm)
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoi	re, etc.)	

Agence	Paris Centre Normandie	Projet n°	NIEP110012		
Adresse	Anton Group POLIEN	Intitulé :	EPFN - Diagn	ostic SOL	
Auresse	Antea Group ROUEN Horizon 2000 - Mach 5	Lieu:	Vernon (27)		
	Avenue des Hauts Grigneux	Lieu .	vernon (21)		
	76420 BIHOREL	Responsable	e du projet : C.l	DUBOST	
Tél:	02 32 76 69 60		mpagne: 23/0		
Fax:	02 32 76 69 63	rin de camp	pagne : 23/09/20	011	
Préleveur(s)	F.BARBAULT	N° station		D3	
Data /III	22/00/2011	O411-	Т) - 11 - · · · · · · · · · · · · · · · ·	
Date/Heure	23/09/2011	Outils	ŀ	Pelle mécaniqu	ie
Profondeur (m)	Description			Profondeur	Mesure PID
()	Blocs de béton et férailles			prélevée (m)	(ppm)
	Blocs de beton et lerames				
Observations (ré	cupération d'échantillons, justification du n	on respect du	mode opératoi	re, etc.)	

Agence	Paris Centre Normandie	Projet n°	NIEP110012		
Adresse	Antoo Crown DOLIEN	Intitulé:	EPFN - Diagr	ostic SOL	
Adresse	Antea Group ROUEN Horizon 2000 - Mach 5	Lieu:	Vernon (27)		
	Avenue des Hauts Grigneux	Lica .	vernon (27)		
	76420 BIHOREL	Responsabl	e du projet : C.	DUBOST	
Tél:	02 32 76 69 60		ampagne: 23/0		
Fax:	02 32 76 69 63	Fin de cam	pagne : 23/09/2	011	
Préleveur(s)	F.BARBAULT	N° station		D4	
Date/Heure	23/09/2011	Outils	F	Pelle mécaniqu	ie
				1	
				Profondeur	Mesure PID
Profondeur (m)	Description			prélevée (m)	(ppm)
	Sable noirâtre avec ferailles,béton, PVC,	plâtre.			
Observations (ré	cupération d'échantillons, justification du	non respect du	mode opératoi	re, etc.)	
		-	-		

Agence

Paris Centre Normandie

FICHE DE PRELEVEMENT : SOL

Projet n°

Intitulé:

NIEP110012

EPFN - Diagnostic SOL

Adresse	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux 76420 BIHOREL	Lieu : Responsable	Vernon (27) du projet : C.I	DUBOST	
	02 32 76 69 60 02 32 76 69 63	Début de cam Fin de campa			
Préleveur(s)	F.BARBAULT	N° station		D5	
Date/Heure	23/09/2011	Outils	P	elle mécaniqu	e
Profondeur (m)	Description			Profondeur prélevée (m)	Mesure PID (ppm)
	Limons bruns et résidus de fonderie noirât bois, plastiques	re avec béton, f	erailles erailles		
Observations (ré	cupération d'échantillons, justification du n	on respect du n	node opératoin	re, etc.)	

Agence Paris Centre Normandie Projet n° NIEP110012
Intitulé : EPFN - Diagnostic SOL

Adresse Antea Group ROUEN
Horizon 2000 - Mach 5
Avenue des Hauts Grigneux
76420 BIHOREL Responsable du projet : C.DUBOST

 Tél:
 02 32 76 69 60
 Début de campagne : 23/09/2011

 Fax:
 02 32 76 69 63
 Fin de campagne : 23/09/2011

Préleveur(s) F.BARBAULT N° station E

Date/Heure 23/09/2011 Outils Pelle mécanique

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.5	Gravats béton		
0.5 - 0.6	ferailles		
0.6 - 0.8	Sables noirâtres		
0.8 - 1.5	Sables argileux marron à noirâtre		

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)			

Agence	Paris Centre Normandie	J 3	IIEP110012 PFN - Diagnostic SOL	
Adresse	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux	Lieu: V	Vernon (27)	
	76420 BIHOREL	Responsable d	u projet : C.DUBOST	
Tél : Fax :	02 32 76 69 60 02 32 76 69 63	_	pagne: 23/09/2011 gne: 23/09/2011	
Préleveur(s)	F.BARBAULT	N° station	F1	
Date/Heure	23/09/2011	Outils	Pelle mécanique	

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.3	Gravats béton		
0.3 - 1.8	Remblais de déconstruction limoneux noirâtre avec brique, béton,		
	carrelage		

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Date/Heure

FICHE DE PRELEVEMENT : SOL

Agence	Paris Centre Normandie	Projet n° NIEP110012 Intitulé : EPFN - Diagnostic SOL
Adresse	Antea Group ROUEN	
	Horizon 2000 - Mach 5	Lieu: Vernon (27)
	Avenue des Hauts Grigneux	
	76420 BIHOREL	Responsable du projet : C.DUBOST
Tél:	02 32 76 69 60	Début de campagne : 23/09/2011
Fax:	02 32 76 69 63	Fin de campagne : 23/09/2011
Préleveur(s)	F.BARBAULT	N° station F2

Outils

23/09/2011

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.1	Gravats béton		
0.1 - 2.0	Remblais noirâtre avec gravats béton, ferailles, humide à 2.0m		

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Pelle mécanique

Agence	Paris Centre Normandie	Projet n° Intitulé:	NIEP110012 EPFN - Diagnostic SOL
Adresse	Antea Group ROUEN Horizon 2000 - Mach 5 Avenue des Hauts Grigneux	Lieu :	Vernon (27)
	76420 BIHOREL	Responsabl	e du projet : C.DUBOST
Tél : Fax :	02 32 76 69 60 02 32 76 69 63		ampagne: 23/09/2011 pagne: 23/09/2011
Préleveur(s)	F.BARBAULT	N° station	F3
Date/Heure	23/09/2011	Outils	Pelle mécanique

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.2	Gravats béton		
0.2 - 1.5	Sable fin gris à beige humide		

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)				

Agence	Paris Centre Normandie	Projet n° Intitulé :	NIEP110012 EPFN - Diagnostic SOL		
Adresse	Antea Group ROUEN		<u> </u>		
	Horizon 2000 - Mach 5 Avenue des Hauts Grigneux	Lieu:	Vernon (27)		
	76420 BIHOREL	Responsable	du projet : C.DUBOST		
Tél:	02 32 76 69 60	Début de car	mpagne: 23/09/2011		
Fax:	02 32 76 69 63	Fin de camp	Fin de campagne : 23/09/2011		
Préleveur(s)	F.BARBAULT	N° station	G		
Date/Heure	23/09/2011	Outils	Pelle mécanique		

Profondeur (m)	Description	Profondeur prélevée (m)	Mesure PID (ppm)
0 - 0.25	Gravats béton		
0.25 - 1.0	Fosse remplie de débris de déconstruction et eau.		

Observations (récupération d'échantillons, justification du non respect du mode opératoire, etc.)							

 Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Annexe 9

Rapport d'analyses Alcontrol

(65 pages)

ALcontrol Laboratories France

5 rue Madame de Sanzillon \cdot 92110 Clichy-sur-Seine Tel.: +33 (0)155 90 52 50 \cdot Fax: +33 (0)155 90 52 51 www.alcontrol.fr

Rapport d'analyse

ANTEA GROUP
Florent BARBAULT
Av de Tsukuba
CITIS "le Pentacle"
F-14209 HEROUVILLE ST CLAIR CEDEX

Page 1 sur 62

Votre nom de Projet : SMURFIT /FONDERIE VERNON

Votre référence de Projet : NIEP110012

Référence du rapport ALcontrol : 11719980, version: 1

Rotterdam, 09-11-2011

Cher(e) Madame/ Monsieur,

Veuillez trouver ci-joint les résultats des analyses effectuées en laboratoire pour votre projet NIEP110012. Le rapport reprend les descriptions des échantillons, le nom de projet et les analyses que vous avez indiqués sur le bon de commande. Les résultats rapportés se réfèrent uniquement aux échantillons analysés.

Ce rapport est constitué de 62 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses, à l'exception des analyses sous-traitées, sont réalisées par ALcontrol Laboratoires, Steenhouwerstraat 15, Rotterdam, Pays Bas.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.

Laboratory Manager

Florent BARBAULT

Rapport d'analyse

Page 2 sur 62

SMURFIT /FONDERIE VERNON Projet

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début

Date de commande 13-10-2011 14-10-2011

Rapport du

09-11-2011

Analyse	Unité	Q	001	002	003	004	005
matière sèche	% massiqu	e Q	94.1	85.1	88.5	89.1	87.0
METAUX							
arsenic	mg/kg MS	Q	5.4	5.3	5.3	6.1	8.1
cadmium	mg/kg MS	Q	<0.4	<0.4	<0.4	<0.4	<0.4
chrome	mg/kg MS	Q	<15	15	16	<15	22
cuivre	mg/kg MS	Q	23	22	7.2	120	110
nercure	mg/kg MS	Q	<0.05	< 0.05	< 0.05	0.06	0.10
olomb	mg/kg MS	Q	<13	14	<13	15	5′
nickel	mg/kg MS	Q	9.3	9.6	9.9	14	15
zinc	mg/kg MS	Q	<20	32	26	55	97
COMPOSES AROMATIQU	ES VOLATILS						
penzène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	0.07	<0.05
oluène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	0.14	<0.05
éthylbenzène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	<0.0
orthoxylène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
ara- et métaxylène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	<0.0
kylènes	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	<0.0
BTEX total	mg/kg MS	Q	<0.2	<0.2	<0.2	0.25	<0.2
HYDROCARBURES ARON	MATIQUES POL	YCYCLIQL	IES				
naphtalène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.03 2)	0.05
acénaphtylène	mg/kg MS	Q	# 1)	<0.02	< 0.02	<0.02	0.09
cénaphtène	mg/kg MS	Q	# 1)	<0.02	< 0.02	<0.02	0.08
luorène	mg/kg MS	Q	# 1)	<0.02	< 0.02	< 0.02	0.16
ohénanthrène	mg/kg MS	Q	# 1)	<0.02	< 0.02	0.06	1.5
anthracène	mg/kg MS	Q	# 1)	<0.02	< 0.02	< 0.02	0.37
luoranthène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.10	2.3
pyrène	mg/kg MS	Q	# 1)	<0.02	< 0.02	0.18	2.0
penzo(a)anthracène	mg/kg MS	Q	# 1)	<0.02	< 0.02	0.11	1.2
chrysène	mg/kg MS	Q	# 1)	<0.02	< 0.02	0.09	0.9
enzo(b)fluoranthène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.16	1.7
enzo(k)fluoranthène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.07	0.72
enzo(a)pyrène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.07	1.4
libenzo(ah)anthracène	mg/kg MS	Q	# 1)	<0.02	<0.02	<0.02	0.2
enzo(ghi)pérylène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.08	1.0
ndéno(1,2,3-cd)pyrène	mg/kg MS	Q	# 1)	<0.02	<0.02	0.08	1.0
HAP totaux (10) VROM	mg/kg MS	Q	# 1)	<0.2	<0.2	0.70	11

Code	Matrice	Réf. échantillon
001	Sol	S1 (0-1)
002	Sol	S2 (0-1)
003	Sol	S3 (0-1)
004	Sol	S4 (0-1)
005	Sol	S5 (0-1)

Florent BARBAULT

Référence du projet

Rapport d'analyse

Page 3 sur 62

Projet SMURFIT /FONDERIE VERNON

NIEP110012

Date de début

14-10-2011

Réf. du rapport 11719980 - 1

Rapport du 09-11-2011

Date de commande 13-10-2011

Analyse	Unité	Q	001	002	003	004	005
HAP totaux (16) - EPA	mg/kg MS	Q	# 1)	<0.32	<0.32	1.1	15
COMPOSES ORGANO HAL	OGENES VOL	ATILS					
1,2-dichloroéthane	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,1-dichloroéthène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
cis-1,2-dichloroéthène	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
rans 1,2-dichloroéthylène	mg/kg MS	Q	<0.02	<0.02	< 0.02	< 0.02	<0.02
lichlorométhane	mg/kg MS	Q	<0.02	<0.02	< 0.02	< 0.02	<0.02
,2-dichloropropane	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
,3-dichloropropène	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
étrachloroéthylène	mg/kg MS	Q	< 0.02	<0.02	< 0.02	< 0.02	<0.02
étrachlorométhane	mg/kg MS	Q	<0.02	<0.02	<0.02	< 0.02	<0.02
,1,1-trichloroéthane	mg/kg MS	Q	0.06	0.06	< 0.03	< 0.03	< 0.03
richloroéthylène	mg/kg MS	Q	0.19	<0.02	< 0.02	< 0.02	<0.02
chloroforme	mg/kg MS	Q	< 0.02	<0.02	< 0.02	< 0.02	< 0.02
chlorure de vinyle	mg/kg MS	Q	< 0.02	<0.02	< 0.02	< 0.02	< 0.02
nexachlorobutadiène	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
romoforme	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05
HYDROCARBURES TOTAU	X						
raction C10-C12	mg/kg MS		<5	<5	<5	<5	<5
raction C12-C16	mg/kg MS		<5	<5	<5	<5	17
raction C16 - C21	mg/kg MS		<5	<5	<5	49	28
raction C21 - C40	mg/kg MS		<5	<5	<5	1700	33
ydrocarbures totaux 210-C40	mg/kg MS	Q	<20	<20	<20	1800	80
ANALYSES SOUS-TRAITÉE	S						
Dioxines (PCDD/PCDF)			voir annexe	voir annexe			voir annexe

Code	Matrice	Réf. échantillon
001	Sol	S1 (0-1)
002	Sol	S2 (0-1)
003	Sol	S3 (0-1)
004	Sol	S4 (0-1)
005	Sol	S5 (0-1)

Florent BARBAULT Rapport d'analyse

Page 4 sur 62

ProjetSMURFIT /FONDERIE VERNONDate de commande 13-10-2011Référence du projetNIEP110012Date de début14-10-2011

Réf. du rapport 11719980 - 1 Rapport du 09-11-2011

Comments

La mesure a été réalisée. En raison d'un phénomène d'absorption par la matrice de l'échantillon, aucun résultat

acceptable n'a pu toutefois être rapporté.

2 Résultat fourni à titre indicatif en raison de la présence de composantsinterférants

Florent BARBAULT

Rapport d'analyse

Page 5 sur 62

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011

Date de début 14-10-2011

Rapport du 09-11-2011

Analyse	Unité	Q	006	007	008	009	010
matière sèche	% massiqu	e Q	87.2	86.8	86.6	90.2	85.9
METAUX							
arsenic	mg/kg MS	Q	4.1	7.0	14	7.4	390
cadmium	mg/kg MS	Q	<0.4	<0.4	3.3	<0.4	1.6
chrome	mg/kg MS	Q	<15	18	22	<15	19
cuivre	mg/kg MS	Q	<5	15	2200	120	1600
mercure	mg/kg MS	Q	< 0.05	0.13	< 0.05	< 0.05	0.36
olomb	mg/kg MS	Q	<13	54	22	21	8700
nickel	mg/kg MS	Q	7.9	11	140	11	61
zinc	mg/kg MS	Q	<20	87	270	31	640
COMPOSES AROMATIQU	ES VOLATILS						
penzène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
oluène	mg/kg MS	Q	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
éthylbenzène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
orthoxylène	mg/kg MS	Q	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
para- et métaxylène	mg/kg MS	Q	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
kylènes	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BTEX total	mg/kg MS	Q	<0.2	<0.2	<0.2	<0.2	<0.2
HYDROCARBURES ARON	MATIQUES POL	YCYCLIQU	JES				
naphtalène	mg/kg MS	Q	<0.02	0.03	<0.02	0.22	0.04
acénaphtylène	mg/kg MS	Q	<0.02	0.65	<0.02	<0.02	0.03
acénaphtène	mg/kg MS	Q	<0.02	0.14	<0.02	0.03	< 0.02
fluorène	mg/kg MS	Q	<0.02	0.25	<0.02	0.03	< 0.02
ohénanthrène	mg/kg MS	Q	<0.02	3.6	0.04	0.44	0.39
anthracène	mg/kg MS	Q	<0.02	0.89	<0.02	0.06	0.09
luoranthène	mg/kg MS	Q	<0.02	7.9	0.12	0.47	0.88
pyrène	mg/kg MS	Q	<0.02	6.1	0.10	0.32	0.79
penzo(a)anthracène	mg/kg MS	Q	<0.02	3.9	0.10	0.19	0.45
chrysène	mg/kg MS	Q	<0.02	3.2	0.07	0.15	0.42
penzo(b)fluoranthène	mg/kg MS	Q	<0.02	4.9	0.17	0.20	0.87
enzo(k)fluoranthène	mg/kg MS	Q	<0.02	2.1	0.07	0.09	0.38
penzo(a)pyrène	mg/kg MS	Q	<0.02	3.8	0.10	0.10	0.62
dibenzo(ah)anthracène	mg/kg MS	Q	<0.02	0.60	<0.02	<0.02	0.12
penzo(ghi)pérylène	mg/kg MS	Q	<0.02	2.7	0.10	0.06	0.64
ndéno(1,2,3-cd)pyrène	mg/kg MS	Q	<0.02	2.7	0.10	0.05	0.57
HAP totaux (10) VROM	mg/kg MS	Q	<0.2	31	0.73	1.8	4.5

Code	Matrice	Réf. échantillon
006	Sol	S6 (0-1)
007	Sol	S7 (0-1)
800	Sol	S8 (0-1)
009	Sol	S9 (0-1)
010	Sol	S10 (0-1)

Florent BARBAULT

Rapport d'analyse

Page 6 sur 62

SMURFIT /FONDERIE VERNON Projet

NIEP110012

Date de début

14-10-2011

Référence du projet 11719980 - 1 Réf. du rapport

Rapport du

Date de commande 13-10-2011

09-11-2011

Analyse	Unité	Q	006	007	800	009	010
HAP totaux (16) - EPA	mg/kg MS	Q	<0.32	43	1.0	2.4	6.3
COMPOSES ORGANO HAL	OGENES VOL	ATILS					
1,2-dichloroéthane	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,1-dichloroéthène	mg/kg MS	Q	<0.05	<0.05	< 0.05	< 0.05	< 0.05
cis-1,2-dichloroéthène	mg/kg MS	Q	< 0.03	<0.03	< 0.03	< 0.03	< 0.03
trans 1,2-dichloroéthylène	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
dichlorométhane	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
1,2-dichloropropane	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,3-dichloropropène	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
tétrachloroéthylène	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
tétrachlorométhane	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
1,1,1-trichloroéthane	mg/kg MS	Q	< 0.03	<0.03	< 0.03	< 0.03	< 0.03
trichloroéthylène	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
chloroforme	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
chlorure de vinyle	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
hexachlorobutadiène	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
bromoforme	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05
HYDROCARBURES TOTAU	'X						
fraction C10-C12	mg/kg MS		<5	<5	<5	<5	<5
fraction C12-C16	mg/kg MS		<5	<5	<5	<5	<5
fraction C16 - C21	mg/kg MS		<5	13	<5	<5	10
fraction C21 - C40	mg/kg MS		<5	20	<5	24	71
hydrocarbures totaux C10-C40	mg/kg MS	Q	<20	35	<20	25	80

ANALYSES SOUS-TRAITÉES Dioxines (PCDD/PCDF)

voir annexe

Code	Matrice	Réf. échantillon
006	Sol	S6 (0-1)
007	Sol	S7 (0-1)
800	Sol	S8 (0-1)
009	Sol	S9 (0-1)
010	Sol	S10 (0-1)

Florent BARBAULT

Rapport d'analyse

Page 7 sur 62

SMURFIT /FONDERIE VERNON Projet

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début

Date de commande 13-10-2011 14-10-2011 Rapport du 09-11-2011

Analyse	Unité	Q	011	012	013	014	015
matière sèche	% massiqu	e Q	95.3	91.2	94.0	80.0	89.9
METAUX							
arsenic	mg/kg MS	Q	5.0	<4	8.3	<4	23
cadmium	mg/kg MS	Q	<0.4	<0.4	<0.4	<0.4	<0.4
chrome	mg/kg MS	Q	<15	<15	26	17	45
cuivre	mg/kg MS	Q	30	160	43	5.4	350
nercure	mg/kg MS	Q	< 0.05	<0.05	< 0.05	< 0.05	0.07
lomb	mg/kg MS	Q	19	<13	<13	<13	51
ickel	mg/kg MS	Q	19	<3	21	9.9	39
inc	mg/kg MS	Q	39	<20	<20	40	170
COMPOSES AROMATIQU	ES VOLATILS						
penzène	mg/kg MS	Q	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
oluène	mg/kg MS	Q	0.06	<0.05	0.07	< 0.05	< 0.05
thylbenzène	mg/kg MS	Q	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
rthoxylène	mg/kg MS	Q	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
ara- et métaxylène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
ylènes	mg/kg MS	Q	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
BTEX total	mg/kg MS	Q	<0.2	<0.2	<0.2	<0.2	<0.2
HYDROCARBURES ARON	MATIQUES POL	YCYCLIQI	JES				
naphtalène	mg/kg MS	Q	0.41	0.03	0.15	< 0.02	0.10
cénaphtylène	mg/kg MS	Q	0.02 2)	< 0.02	<0.02	< 0.02	0.03
cénaphtène	mg/kg MS	Q	0.04 2)	<0.02	<0.02	< 0.02	< 0.02
luorène	mg/kg MS	Q	0.03	<0.02	<0.02	< 0.02	0.02
hénanthrène	mg/kg MS	Q	0.53	0.07	0.26	< 0.02	0.46
inthracène	mg/kg MS	Q	0.04	< 0.02	0.03	< 0.02	0.06
uoranthène	mg/kg MS	Q	0.20	0.05	0.06	< 0.02	0.56
yrène	mg/kg MS	Q	0.17	0.03	0.06	< 0.02	0.37
enzo(a)anthracène	mg/kg MS	Q	0.07	0.03	0.06	< 0.02	0.37
hrysène	mg/kg MS	Q	0.08	0.04	0.05	<0.02	0.47
enzo(b)fluoranthène	mg/kg MS	Q	0.10	0.03	0.06	< 0.02	0.64
enzo(k)fluoranthène	mg/kg MS	Q	0.04	<0.02	0.02	< 0.02	0.28
enzo(a)pyrène	mg/kg MS	Q	0.05	<0.02	0.02	< 0.02	0.27
libenzo(ah)anthracène	mg/kg MS	Q	<0.02	<0.02	<0.02	< 0.02	0.16
enzo(ghi)pérylène	mg/kg MS	Q	0.07	<0.02	0.02	< 0.02	0.29
ndéno(1,2,3-cd)pyrène	mg/kg MS	Q	0.04	<0.02	<0.02	< 0.02	0.25
HAP totaux (10) VROM	mg/kg MS	Q	1.5	0.27	0.70	<0.2	3.1

Code	Matrice	Réf. échantillon
011	Sol	S11 (0-1)
012	Sol	S12 (0-1)
013	Sol	S13 (0-1)
014	Sol	S14 (0-1)
015	Sol	S15 (0-1)

Florent BARBAULT

Rapport d'analyse

Page 8 sur 62

SMURFIT /FONDERIE VERNON Projet

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début

14-10-2011

Date de commande 13-10-2011

Rapport du

09-11-2011

Analyse	Unité	Q	011	012	013	014	015
HAP totaux (16) - EPA	mg/kg MS	Q	1.9	0.35	0.86	<0.32	4.4
COMPOSES ORGANO HAL	OGENES VOL	ATILS					
1,2-dichloroéthane	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	<0.03
1,1-dichloroéthène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
cis-1,2-dichloroéthène	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
rans 1,2-dichloroéthylène	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
dichlorométhane	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
1,2-dichloropropane	mg/kg MS	Q	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,3-dichloropropène	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
étrachloroéthylène	mg/kg MS	Q	<0.02	<0.02	0.02	<0.02	< 0.02
étrachlorométhane	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
1,1,1-trichloroéthane	mg/kg MS	Q	< 0.03	< 0.03	0.19	< 0.03	< 0.03
richloroéthylène	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
chloroforme	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
chlorure de vinyle	mg/kg MS	Q	<0.02	<0.02	<0.02	<0.02	< 0.02
nexachlorobutadiène	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
oromoforme	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05
HYDROCARBURES TOTAU	X						
raction C10-C12	mg/kg MS		<5	<5	<5	<5	<5
raction C12-C16	mg/kg MS		11	<5	<5	<5	<5
raction C16 - C21	mg/kg MS		39	16	<5	<5	7.8
raction C21 - C40	mg/kg MS		350	1400	9.9	<5	40
nydrocarbures totaux C10-C40	mg/kg MS	Q	400	1400	<20	<20	50

ANALYSES SOUS-TRAITÉES Dioxines (PCDD/PCDF)

voir annexe

Code	Matrice	Réf. échantillon
011	Sol	S11 (0-1)
012	Sol	S12 (0-1)
013	Sol	S13 (0-1)
014	Sol	S14 (0-1)
015	Sol	S15 (0-1)

Florent BARBAULT

Rapport d'analyse

Page 9 sur 62

 Projet
 SMURFIT /FONDERIE VERNON
 Date de commande 13-10-2011

 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 ° 1
 Rapport du
 09-11-2011

Comments

2 Résultat fourni à titre indicatif en raison de la présence de composantsinterférants

Florent BARBAULT

Rapport d'analyse

Page 10 sur 62

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011

Date de début 14-10-2011

Rapport du 09-11-2011

Analyse ————————————————————————————————————	Unité	Q	022	023	024	026	028
matière sèche	% massiqu	e Q	87.4	92.7	83.3	89.0	86.5
СОТ	% MS	Q	2.8 5)	1.5 5)	1.3 5)	2.4 5)	4.0
pH (KCI)	-	Q	9.8	8.0	11.7	8.6	8.0
température pour mes. pH	°C		20.8	20.6	20.5	21.2	20.5
LIXIVIATION							
date de lancement		Q	19-10-2011	19-10-2011	19-10-2011	19-10-2011	19-10-2011
Lixiviation 24h - NF-EN-12457-2		Q	#	#	#	#	#
COMPOSES AROMATIQUE	S VOLATILS						
benzène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
oluène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	0.07	<0.05
éthylbenzène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	0.29	<0.05
orthoxylène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	0.29	< 0.05
para- et métaxylène	mg/kg MS	Q	< 0.05	< 0.05	< 0.05	0.46	< 0.05
xylènes	mg/kg MS	Q	0.05	< 0.05	< 0.05	0.74	< 0.05
BTEX total	mg/kg MS	Q	<0.2	<0.2	<0.2	1.1	<0.2
HYDROCARBURES AROMA	ATIQUES POL	YCYCLI	QUES				
naphtalène	mg/kg MS	Q	0.75	<0.02	< 0.02	0.81	0.03
acénaphtylène	mg/kg MS	Q	<0.02	0.02	< 0.02	< 0.02	< 0.02
acénaphtène	mg/kg MS	Q	0.10	<0.02	< 0.02	0.10	< 0.02
fluorène	mg/kg MS	Q	0.19 2)	<0.02	< 0.02	0.16 2)	< 0.02
phénanthrène	mg/kg MS	Q	0.40	0.07	< 0.02	0.42	0.18
anthracène	mg/kg MS	Q	0.10	0.03	< 0.02	0.10	0.02
fluoranthène	mg/kg MS	Q	0.69	0.20	< 0.02	0.50	0.26
pyrène	mg/kg MS	Q	0.57	0.16	< 0.02	0.40	0.21
benzo(a)anthracène	mg/kg MS	Q	0.41	0.11	<0.02	0.38	0.14
chrysène	mg/kg MS	Q	0.40	0.10	<0.02	0.33	0.10
benzo(b)fluoranthène	mg/kg MS	Q	0.43	0.16	<0.02	0.30	0.16
benzo(k)fluoranthène	mg/kg MS	Q	0.18	0.07	<0.02	0.13	0.07
benzo(a)pyrène	mg/kg MS	Q	0.26	0.11	< 0.02	0.30	0.08
dibenzo(ah)anthracène	mg/kg MS	Q	0.06	0.02	< 0.02	0.07	< 0.02
benzo(ghi)pérylène	mg/kg MS	Q	0.18	0.09	< 0.02	0.22	0.06
indéno(1,2,3-cd)pyrène	mg/kg MS	Q	0.16	0.09	< 0.02	0.18	0.06
HAP totaux (10) VROM	mg/kg MS	Q	3.5	0.88	<0.2	3.4	1.0

Les analyses notées Q sont accréditées par le RvA.

Code	Matrice	Réf. échantillon
022	Sol	C1
023	Sol	(C3+C5)
024	Sol	C4
026	Sol	D4
028	Sol	E1

ne:

Florent BARBAULT

Rapport d'analyse

Page 11 sur 62

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011

Date de commande 13-10-2011

Rapport du

09-11-2011

Analyse	Unité	Q	022	023	024	026	028
HAP totaux (16) - EPA	mg/kg MS	Q	4.9	1.3	<0.32	4.4	1.4
POLYCHLOROBIPHENYL	S (PCB)						
PCB 28	μg/kg MS	Q	70 4)	<2	<2	40 4)	<2
PCB 52	μg/kg MS	Q	140	<2	<2	130	<2
PCB 101	μg/kg MS	Q	98	<2	<2	70	<2
PCB 118	μg/kg MS	Q	100	<2	<2	62	<2
PCB 138	μg/kg MS	Q	98	<2	<2	63	<2
PCB 153	μg/kg MS	Q	71	<2	<2	50	<2
PCB 180	μg/kg MS	Q	28	<2	<2	22	<2
PCB totaux (7)	μg/kg MS	Q	610	<14	<14	440	<14
HYDROCARBURES TOTA	UX						
fraction C10-C12	mg/kg MS		<5	<5	<5	<5	<5
fraction C12-C16	mg/kg MS		13	<5	<5	8.2	<5
fraction C16 - C21	mg/kg MS		71	<5	<5	36	<5
fraction C21 - C40	mg/kg MS		2000	14	<5	770	22
hydrocarbures totaux C10-C40	mg/kg MS	Q	2000	<20	<20	810	20

Les analyses notées Q sont accréditées par le RvA.

Code	Matrice	Réf. échantillon
022	Sol	C1
023	Sol	(C3+C5)
024	Sol	C4
026	Sol	D4
028	Sol	E1

phe:

Rapport d'analyse Florent BARBAULT

Page 12 sur 62

SMURFIT /FONDERIE VERNON Projet Date de commande 13-10-2011 Référence du projet NIEP110012 Date de début 14-10-2011 Rapport du 09-11-2011 Réf. du rapport 11719980 - 1

Comments	
2	Résultat fourni à titre indicatif en raison de la présence de composantsinterférants
4	Il est possible d'avoir sur-estimé le PCB 28 en raison de la présence du PCB 31
5	Le résultat du COT est calculé à partir de la teneur en matière organique (NEN 5754 et CMA 2/IIA.7)

Florent BARBAULT

Rapport d'analyse

Page 13 sur 62

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011

Date de début 14-10-2011

Rapport du 09-11-2011

Analyse	Unité	Q	029	030	031
matière sèche	% massiqu	e Q	86.6	86.9	85.4
СОТ	% MS	Q	2.7 5)	3.0 5)	<0.5 5)
pH (KCI)	-	Q	10.5	8.5	9.3
empérature pour mes. pH	°C		20.0	20.6	20.7
LIXIVIATION					
late de lancement		Q	19-10-2011	19-10-2011	19-10-2011
Lixiviation 24h - NF-EN-12457-2		Q	#	#	#
COMPOSES AROMATIQUE	ES VOLATILS				
enzène	mg/kg MS	Q	<0.05	0.17	< 0.05
oluène	mg/kg MS	Q	<0.05	0.30	< 0.05
éthylbenzène	mg/kg MS	Q	<0.05	0.16	< 0.05
orthoxylène	mg/kg MS	Q	< 0.05	< 0.05	<0.05
oara- et métaxylène	mg/kg MS	Q	<0.05	0.14	<0.05
xylènes	mg/kg MS	Q	<0.05	0.18	< 0.05
BTEX total	mg/kg MS	Q	<0.2	0.82	<0.2
HYDROCARBURES AROM.	ATIQUES POL	YCYCL	IQUES		
naphtalène	mg/kg MS	Q	1.6	2.0	0.13
acénaphtylène	mg/kg MS	Q	0.02	0.04 2)	<0.02
acénaphtène	mg/kg MS	Q	0.07 2)	0.14 2)	<0.02
uorène	mg/kg MS	Q	0.13 2)	0.22	<0.02
hénanthrène	mg/kg MS	Q	0.24	0.62	0.07
nthracène	mg/kg MS	Q	0.07	0.13	0.02
luoranthène	mg/kg MS	Q	0.38	0.37	0.06
yrène	mg/kg MS	Q	0.30	0.30	0.04
penzo(a)anthracène	mg/kg MS	Q	0.25	0.32	0.05
chrysène	mg/kg MS	Q	0.24	0.32	0.04
penzo(b)fluoranthène	mg/kg MS	Q	0.14	0.27	0.03
benzo(k)fluoranthène	mg/kg MS	Q	0.06	0.12 2)	<0.02
benzo(a)pyrène	mg/kg MS	Q	0.12	0.15	<0.02
dibenzo(ah)anthracène	mg/kg MS	Q	0.03	0.05	<0.02
benzo(ghi)pérylène	mg/kg MS	Q	0.08	0.12	<0.02
indéno(1,2,3-cd)pyrène	mg/kg MS	Q	0.07	0.10	<0.02
HAP totaux (10) VROM	mg/kg MS	Q	3.1	4.2	0.43

Code	Matrice	Réf. échantillon
029	Sol	F1
030	Sol	F2
031	Sol	F3

Florent BARBAULT

Rapport d'analyse

Page 14 sur 62

SMURFIT /FONDERIE VERNON Projet

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début

Date de commande 13-10-2011 14-10-2011

Rapport du

09-11-2011

Analyse	Unité	Q	029	030	031
HAP totaux (16) - EPA	mg/kg MS	Q	3.8	5.2	0.53
POLYCHLOROBIPHENYL	S (PCB)				
PCB 28	μg/kg MS	Q	24 4)	370 4)	<2
PCB 52	μg/kg MS	Q	24	360	33
PCB 101	μg/kg MS	Q	16	140	59
PCB 118	μg/kg MS	Q	17	140	49
PCB 138	μg/kg MS	Q	17	120	30
PCB 153	μg/kg MS	Q	12	95	23
PCB 180	μg/kg MS	Q	5.9	35	3.6
PCB totaux (7)	μg/kg MS	Q	120	1300	200
HYDROCARBURES TOTA	A <i>UX</i>				
fraction C10-C12	mg/kg MS		<5	<5	<5
fraction C12-C16	mg/kg MS		14	22	<5
fraction C16 - C21	mg/kg MS		87	64	<5
fraction C21 - C40	mg/kg MS		1000	1500	60
hydrocarbures totaux C10-C40	mg/kg MS	Q	1100	1600	60

Code	Matrice	Réf. échantillon
029	Sol	F1
030	Sol	F2
031	Sol	F3

Florent BARBAULT Rapport d'analyse

Page 15 sur 62

 Projet
 SMURFIT /FONDERIE VERNON
 Date de commande 13-10-2011

 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 ° 1
 Rapport du
 09-11-2011

Comments	
2	Résultat fourni à titre indicatif en raison de la présence de composantsinterférants
4	Il est possible d'avoir sur-estimé le PCB 28 en raison de la présence du PCB 31
5	Le résultat du COT est calculé à partir de la teneur en matière organique (NEN 5754 et CMA 2/IIA.7)

Florent BARBAULT

Rapport d'analyse

Page 16 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011 Rapport du 09-11-2011

Analyse	Unité	Q	016	017	_
COMPOSES AROMATIQUE	S VOI ATII S				
benzène	μg/éch.	Q	<1	<1	
toluène	μg/ech. μg/éch.	Q	<1	<1	
éthylbenzène	μg/ech. μg/éch.	Q	<1	<1	
orthoxylène	μg/ecn. μg/éch.	Q	<1 <1	<1	
•		Q	<2	<2	
para- et métaxylène	μg/éch.	Q	<2 <3	<2 <3	
xylènes	μg/éch.	0			
BTEX total	μg/éch.	Q	<6	<6	
HYDROCARBURES AROMA	ATIQUES POL	YCYCLIQI	JES		
naphtalène	ng/support		<66	<66	
anthracène	ng/support		<1.7	<1.7	
phénanthrène	ng/support		<8.25	<8.25	
fluoranthène	ng/support		<6.6	<6.6	
benzo(a)anthracène	ng/support		<6.6	<6.6	
chrysène	ng/support		<6.6	<6.6	
benzo(a)pyrène	ng/support		<5.0	<5.0	
benzo(ghi)pérylène	ng/support		<6.6	<6.6	
benzo(k)fluoranthène	ng/support		<5.0	<5.0	
indéno(1,2,3-cd)pyrène	ng/support		<6.6	<6.6	
acénaphtylène	ng/support		<66	<66	
acénaphtène	ng/support		<66	<66	
fluorène	ng/support		<17	<17	
pyrène	ng/support		<9.90	<9.90	
benzo(b)fluoranthène	ng/support		<6.6	<6.6	
dibenzo(ah)anthracène	ng/support		<17	<17	
HAP totaux (10) VROM	ng/support		<120	<120	
HAP totaux (16) - EPA	ng/support		<300	<300	
COMPOSES ORGANO HAL	OGENES VOI	ATII S			
1,2-dichloroéthane	μg/éch.	Q	<1	<1	
1,1-dichloroéthène	μg/éch.	•	<1	<1	
cis-1,2-dichloroéthène	μg/éch.	Q	<1	<1	
trans 1,2-dichloroéthylène	μg/ech. μg/éch.	~	<1	<1	
dichlorométhane	μg/ech. μg/éch.		<1	<1	
1,2-dichloropropane	μg/ech. μg/éch.	Q	<1	<1	
1,3-dichloropropène	μg/éch.	~	<1	<1	
tétrachloroéthylène	μg/éch.	Q	<1	<1	
tétrachlorométhane	μg/ech. μg/éch.	Q	<1	<1	
1,1,1-trichloroéthane	μg/éch.	Q	<1	7.7	
1,1,1-1110111010001110110	μg/ecπ.	Q	<1	1.1	

Code	Matrice	Réf. échantillon
016	air (tubes/badges)	PG1
017	air (tubes/badges)	PG2

Florent BARBAULT

Rapport d'analyse

Page 17 sur 62

SMURFIT /FONDERIE VERNON Projet

NIEP110012

Date de début

14-10-2011

Référence du projet Réf. du rapport 11719980 - 1

Rapport du

Date de commande 13-10-2011

09-11-2011

Analyse	Unité	Q	016	017
trichloroéthylène	μg/éch.	Q	<1	<1
chloroforme	μg/éch.	Q	<1	<1
chlorure de vinyle	μg/éch.		<1	<1
hexachlorobutadiène	μg/éch.		<1	<1
bromoforme	μg/éch.	Q	<1	<1
HYDROCARBURES TOTA	A <i>UX</i>			
fraction C6 - C8	μg/éch.		<10	<10
fraction C8 - C10	μg/éch.		<10	<10
fraction C10-C12	μg/éch.		<10	<10
fraction C12-C16	μg/éch.		<20	<20
hydrocarbures volatils C6-C16	μg/éch.		<50	<50

Code	Matrice	Réf. échantillon
016	air (tubes/badges)	PG1
017	air (tubes/badges)	PG2

Florent BARBAULT

Rapport d'analyse

Page 18 sur 62

SMURFIT /FONDERIE VERNON Projet

NIEP110012

Date de commande 13-10-2011 Date de début 14-10-2011

Référence du projet Réf. du rapport Rapport du 09-11-2011 11719980 - 1

Analyse	Unité	Q	018	019	020	
COMPOSES AROMATIQUE						
benzène	μg/l	Q	<0.2	<0.2	<0.2	
toluène	μg/l	Q	<0.2	<0.2	<0.2	
éthylbenzène	μg/l	Q	0.20	<0.2	<0.2	
orthoxylène	μg/l	Q	<0.1	<0.1	<0.1	
para- et métaxylène	μg/l	Q	0.55	0.44	0.43	
xylènes	μg/l	Q	0.55	0.44	0.43	
BTEX total	μg/l		<1	<1	<1	
HYDROCARBURES AROMA	ATIQUES PC	LYCYCLIQL	IES			
naphtalène	μg/l	Q	<0.1	<0.1	<0.1	
acénaphtylène	μg/l	Q	<0.1	<0.1	<0.1	
acénaphtène	μg/l	Q	<0.1	<0.1	<0.1	
fluorène	μg/l	Q	<0.05	< 0.05	<0.05	
phénanthrène	μg/l	Q	<0.02	<0.02	<0.02	
anthracène	μg/l	Q	<0.02	<0.02	<0.02	
luoranthène	μg/l	Q	<0.02	<0.02	<0.02	
pyrène	μg/l	Q	<0.02	<0.02	<0.02	
penzo(a)anthracène	μg/l	Q	<0.02	<0.02	<0.02	
chrysène	μg/l	Q	<0.02	<0.02	<0.02	
penzo(b)fluoranthène	μg/l	Q	<0.02	<0.02	<0.02	
benzo(k)fluoranthène	μg/l	Q	<0.01	<0.01	<0.01	
benzo(a)pyrène	μg/l	Q	<0.01	<0.01	<0.01	
dibenzo(ah)anthracène	μg/l	Q	<0.02	<0.02	<0.02	
benzo(ghi)pérylène	μg/l	Q	<0.02	<0.02	<0.02	
indéno(1,2,3-cd)pyrène	μg/l	Q	<0.02	<0.02	<0.02	
HAP totaux (10) VROM	μg/l	Q	<0.3	<0.3	<0.3	
HAP totaux (16) - EPA	μg/l	Q	<0.6	<0.6	<0.6	
COMPOSES ORGANO HAL	OGENES VO	DLATILS				
1,2-dichloroéthane	μg/l	Q	<0.1	<0.1	<0.1	
1,1-dichloroéthène	μg/l	Q	<0.1	<0.1	0.36	
cis-1,2-dichloroéthène	μg/l	Q	<0.1	0.19	0.28	
trans 1,2-dichloroéthylène	μg/l	Q	<0.1	<0.1	0.14	
dichlorométhane	μg/l	Q	<0.5	<0.5	<0.5	
1,2-dichloropropane	μg/l	Q	<0.2	<0.2	<0.2	
1,3-dichloropropène	μg/l	Q	<0.2	<0.2	<0.2	
tétrachloroéthylène	μg/l	Q	<0.1	<0.1	0.38	
tétrachlorométhane	μg/l	Q	<0.1	<0.1	<0.1	
1,1,1-trichloroéthane	μg/l	Q	<0.1	<0.1	1.0	
Les analyses notées Q sont a			-0.1			

	Code	Matrice	Réf. échantillon
_	018	Eau souterraine	PZ2
	019	Eau souterraine	PZF2
	020	Eau souterraine	PZF1

Florent BARBAULT

Rapport d'analyse

Page 19 sur 62

SMURFIT /FONDERIE VERNON Projet

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début

Date de commande 13-10-2011 14-10-2011

Rapport du

09-11-2011

Analyse	Unité	Q	018	019	020
	Office		010	019	020
trichloroéthylène	μg/l	Q	<0.1	0.15	0.91
chloroforme	μg/l	Q	<0.1	<0.1	<0.1
chlorure de vinyle	μg/l	Q	<0.1	<0.1	<0.1
hexachlorobutadiène	μg/l	Q	<0.2	<0.2	<0.2
bromoforme	μg/l	Q	<0.2	<0.2	<0.2
POLYCHLOROBIPHENYI	LS (PCB)				
PCB 28	μg/l	Q	<0.01	<0.01	<0.01
PCB 52	μg/l	Q	<0.01	<0.01	<0.01
PCB 101	μg/l	Q	<0.01	<0.01	<0.01
PCB 118	μg/l	Q	<0.01	<0.01	<0.01
PCB 138	μg/l	Q	<0.01	<0.01	<0.01
PCB 153	μg/l	Q	<0.01	<0.01	<0.01
PCB 180	μg/l	Q	<0.01	<0.01	<0.01
PCB totaux (7)	μg/l		<0.07	<0.07	<0.07
HYDROCARBURES TOT.	AUX				
fraction C10-C12	μg/l		<5	<5	<5
fraction C12-C16	μg/l		<5	<5	<5
fraction C16 - C21	μg/l		<5	<5	<5
fraction C21 - C40	μg/l		<5	<5	<5
hydrocarbures totaux C10-C40	μg/l	Q	<20	<20	<20

Code	Matrice	Réf. échantillon
018	Eau souterraine	PZ2
019	Eau souterraine	PZF2
020	Eau souterraine	PZF1

Florent BARBAULT

Rapport d'analyse

Page 20 sur 62

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011
Date de début 14-10-2011
Rapport du 09-11-2011

Analyse	Unité	Q	021	025	027
matière sèche	% massiqu	e Q	89.9	93.2	86.4
СОТ	% MS		8.4	2.7	4.9
pH (KCI)	-	Q	7.7	7.8	8.2
température pour mes. pH	°C		20.6	20.7	20.8
LIXIVIATION					
date de lancement			19-10-2011	19-10-2011	19-10-2011
Lixiviation 24h - NF-EN-12457-2			#	#	#
COMPOSES AROMATIQUE	S VOLATILS				
benzène	mg/kg MS		0.16	< 0.05	0.54
toluène	mg/kg MS		0.26	0.12	0.72
éthylbenzène	mg/kg MS		0.15	0.07	0.45
xylènes	mg/kg MS		0.16	0.06	0.33
BTEX total	mg/kg MS		0.73	0.34	2.0
HYDROCARBURES AROMA	ATIQUES POL	YCYCLI	QUES		
naphtalène	mg/kg MS	Q	1.8	0.88	7.9
acénaphtylène	mg/kg MS	Q	<0.13 3)	< 0.02	0.07 2)
acénaphtène	mg/kg MS	Q	<0.13 3)	0.06	0.22
fluorène	mg/kg MS	Q	<0.13 3)	0.06	0.29
phénanthrène	mg/kg MS	Q	1.0	0.50	3.0
anthracène	mg/kg MS	Q	1.9	0.09	0.70
fluoranthène	mg/kg MS	Q	1.2	0.50	1.3
pyrène	mg/kg MS	Q	0.81	0.40	0.80
benzo(a)anthracène	mg/kg MS	Q	1.0	0.35	0.97
chrysène	mg/kg MS	Q	1.7	0.36	1.1
benzo(b)fluoranthène	mg/kg MS	Q	0.82	0.40	0.45
benzo(k)fluoranthène	mg/kg MS	Q	0.36	0.17	0.20
benzo(a)pyrène	mg/kg MS	Q	0.36	0.25	0.17
dibenzo(ah)anthracène	mg/kg MS	Q	<0.13 3)	0.05	0.05
benzo(ghi)pérylène	mg/kg MS	Q	0.24	0.17	0.10
indéno(1,2,3-cd)pyrène	mg/kg MS	Q	0.23	0.17	0.11
HAP totaux (10) VROM	mg/kg MS	Q	9.8	3.5	15
HAP totaux (16) - EPA	mg/kg MS	Q	11	4.4	17

Code	Matrice	Réf. échantillon
021	Amiante suspectée	(A1+A2)
025	Amiante suspectée	(D1+D2)
027	Amiante suspectée	D5

Florent BARBAULT

Rapport d'analyse

Page 21 sur 62

SMURFIT /FONDERIE VERNON Projet

NIEP110012

Date de début

Date de commande 13-10-2011 14-10-2011

Référence du projet Réf. du rapport 11719980 - 1

Rapport du 09-11-2011

POLYCHLOROBIPHENYLS (PCB) PCB 28							
PCB 28 μg/kg MS Q 96 4 570 4 530 4 PCB 52 μg/kg MS Q 78 200 230 PCB 101 μg/kg MS Q 56 76 99 PCB 118 μg/kg MS Q 56 76 99 PCB 118 μg/kg MS Q 57 68 110 PCB 138 μg/kg MS Q 57 68 110 PCB 153 μg/kg MS Q 61 45 100 PCB 180 μg/kg MS Q 31 23 53 PCB totaux (7) μg/kg MS Q 440 1100 1200 PCB 150 C10-C12 mg/kg MS Q 440 1100 1200 PCB 150 C10-C12 mg/kg MS Q 440 1100 1200 PCB 150 C10-C12 mg/kg MS 45 45 34 fraction C10-C12 mg/kg MS 17 45 34 fraction C16 - C21 mg/kg MS 64 14 61 fraction C21 - C40 mg/kg MS 2400 220 400	Analyse	Unité	Q	021	025	027	
PCB 28 μg/kg MS Q 96 4) 570 4) 530 4) PCB 52 μg/kg MS Q 78 200 230 PCB 101 μg/kg MS Q 56 76 99 PCB 118 μg/kg MS Q 63 90 90 PCB 138 μg/kg MS Q 57 68 110 PCB 153 μg/kg MS Q 61 45 100 PCB 180 μg/kg MS Q 31 23 53 PCB totaux (7) μg/kg MS Q 440 1100 1200 HYDROCARBURES TOTAUX fraction C10-C12 mg/kg MS 75 8.6 fraction C12-C16 mg/kg MS 17 <5 34 fraction C16 - C21 mg/kg MS 64 14 61 fraction C21 - C40 mg/kg MS 2400 220 400							
PCB 52	POLYCHLOROBIPHENYL	LS (PCB)					
PCB 52	PCB 28	μg/kg MS	Q	96 ⁴⁾	570 ⁴⁾	530 ⁴⁾	
PCB 118	PCB 52		Q	78	200	230	
PCB 138	PCB 101	μg/kg MS	Q	56	76	99	
PCB 153 μg/kg MS Q 61 45 100 PCB 180 μg/kg MS Q 31 23 53 PCB totaux (7) μg/kg MS Q 440 1100 1200 HYDROCARBURES TOTAUX fraction C10-C12 mg/kg MS <5 <5 8.6 fraction C12-C16 mg/kg MS 17 <5 34 fraction C16 - C21 mg/kg MS 64 14 61 fraction C21 - C40 mg/kg MS 2400 220 400	PCB 118	μg/kg MS	Q	63	90	90	
PCB 180 μg/kg MS Q 31 23 53 PCB totaux (7) μg/kg MS Q 440 1100 1200 HYDROCARBURES TOTAUX fraction C10-C12 mg/kg MS <5 <5 8.6 fraction C12-C16 mg/kg MS 17 <5 34 fraction C16 - C21 mg/kg MS 64 14 61 fraction C21 - C40 mg/kg MS 2400 220 400	PCB 138	μg/kg MS	Q	57	68	110	
PCB totaux (7) μg/kg MS Q 440 1100 1200 HYDROCARBURES TOTAUX fraction C10-C12 mg/kg MS <5 <5 8.6 fraction C12-C16 mg/kg MS 17 <5 34 fraction C16 - C21 mg/kg MS 64 14 61 fraction C21 - C40 mg/kg MS 2400 220 400	PCB 153	μg/kg MS	Q	61	45	100	
HYDROCARBURES TOTAUX fraction C10-C12 mg/kg MS <5	PCB 180	μg/kg MS	Q	31	23	53	
fraction C10-C12 mg/kg MS <5 <5 8.6 fraction C12-C16 mg/kg MS 17 <5	PCB totaux (7)	μg/kg MS	Q	440	1100	1200	
fraction C12-C16 mg/kg MS 17 <5	HYDROCARBURES TOTA	AUX					
fraction C16 - C21 mg/kg MS 64 14 61 fraction C21 - C40 mg/kg MS 2400 220 400	fraction C10-C12	mg/kg MS		<5	<5	8.6	
fraction C21 - C40 mg/kg MS 2400 220 400	fraction C12-C16	mg/kg MS		17	<5	34	
	fraction C16 - C21	mg/kg MS		64	14	61	
	fraction C21 - C40	mg/kg MS		2400	220	400	
	hydrocarbures totaux C10-C40	mg/kg MS		2500	230	500	

Code	Matrice	Réf. échantillon
021	Amiante suspectée	(A1+A2)
025	Amiante suspectée	(D1+D2)
027	Amiante suspectée	D5

Florent BARBAULT Rapport d'analyse

Page 22 sur 62

 Projet
 SMURFIT /FONDERIE VERNON
 Date de commande 13-10-2011

 Référence du projet
 NIEP110012
 Date de début 14-10-2011

 Réf. du rapport
 11719980 ° 1
 Rapport du 09-11-2011

Comments	
2	Résultat fourni à titre indicatif en raison de la présence de composantsinterférants
3	Limite de quantification élevée en raison d'une dilution nécessaire.
4	Il est possible d'avoir sur-estimé le PCB 28 en raison de la présence du PCB 31

Florent BARBAULT

Rapport d'analyse

Page 23 sur 62

SMURFIT /FONDERIE VERNON Projet

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011 Date de début 14-10-2011 Rapport du 09-11-2011

Analyse	Unité	Q	032	033	034	035	036
СОТ	mg/kg MS	Q	160	74	<50	<50	<50
conductivité ap. lix.	μS/cm	Q	2350	284	895	3280	1444
oH final ap. lix.	-	Q	7.86	10.34	8.08	12.35	7.62
empérature pour mes. pH	°C		19.8	19.7	19.2	19.8	19.7
LIXIVIATION							
_/S	ml/g		10.00	10.00	10.00	10.00	10.00
METAUX							
antimoine	mg/kg MS	Q	< 0.039	< 0.039	<0.039	< 0.039	< 0.039
arsenic	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
paryum	mg/kg MS	Q	0.56	0.12	0.41	5.8	0.37
admium	mg/kg MS	Q	0.01	<0.01	<0.01	<0.01	<0.01
chrome	mg/kg MS	Q	<0.1	0.20	<0.1	0.46	<0.1
cuivre	mg/kg MS	Q	0.23	<0.1	<0.1	<0.1	<0.1
mercure	mg/kg MS	Q	<0.001	<0.001	<0.001	<0.001	< 0.001
olomb	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
molybdène	mg/kg MS	Q	1.7	0.31	<0.10	0.12	2.1
nickel	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
sélénium	mg/kg MS	Q	< 0.039	<0.039	0.09	< 0.039	< 0.039
zinc	mg/kg MS	Q	1.4	<0.2	<0.2	<0.2	0.62
COMPOSES INORGANIQUE	ES .						
raction soluble	mg/kg MS	Q	24600	2120 ⁶⁾	7500	6780	13100
PHENOLS							
phénol (indice)	mg/kg MS	Q	<0.1	<0.1	<0.1	<0.1	<0.1
DIVERSES ANALYSES CHII	MIQUES						
luorures	mg/kg MS	Q	7.3	3.6	3.2	4.5	8.6
chlorures	mg/kg MS	Q	91	17	13	10	26
sulfate	mg/kg MS	Q	18000	630	4700	49	10000

Code	Matrice	Réf. échantillon
032	Sol	Eluat (A1+A2)
033	Sol	Eluat C1
034	Sol	Eluat (C3+C5)
035	Sol	Eluat C4
036	Sol	Eluat (D1+D2)

Florent BARBAULT Rapport d'analyse

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011
Référence du projet NIEP110012 Date de début 14-10-2011

Réf. du rapport 11719980 - 1 Rapport du 09-11-2011

Comments

6

Le résultat ne répond pas aux critères définis concernant le poids constant. La dernière pesée, après trois séchages, a

Page 24 sur 62

été rapportée avec un remarque selon l'EN 15216.

Florent BARBAULT

Rapport d'analyse

Page 25 sur 62

Rapport du

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011
Date de début 14-10-2011

09-11-2011

Analyse Unité Q 037 038 039 040 041 COT mg/kg MS <50 140 <50 <50 <50 conductivité ap. lix. μS/cm Q 228 707 97.5 450 225 pH final ap. lix. Q 8.87 9.38 8.47 11.11 8.66 °C température pour mes. pH 19.8 19.9 19.8 19.1 20 LIXIVIATION L/S ml/g 10.00 10.00 10.00 10.00 10.00 METAUX antimoine mg/kg MS <0.039 0.054 <0.039 <0.039 <0.039 arsenic mg/kg MS Q < 0.1 0.29 < 0.1 < 0.1 < 0.1 barvum mg/kg MS Q 0.13 <0.1 <0.1 0.30 0.16 cadmium mg/kg MS Q <0.01 <0.01 <0.01 <0.01 <0.01 chrome mg/kg MS Q < 0.1 <0.1 <0.1 0.20 <0.1 cuivre mg/kg MS Q < 0.1 0.20 < 0.1 < 0.1 < 0.1 <0.001 mercure mg/kg MS Q <0.001 <0.001 < 0.001 <0.001 plomb mg/kg MS Q <0.1 0.12 <0.1 < 0.1 <0.1 0.22 molybdène mg/kg MS Q 1.4 < 0.10 0.12 0.24 nickel mg/kg MS Q < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 sélénium mg/kg MS Q <0.039 <0.039 < 0.039 <0.039 zinc mg/kg MS Q <0.2 0.30 <0.2 <0.2 < 0.2 COMPOSES INORGANIQUES 3140 6) 1660 9760 <500 fraction soluble 1440 mg/kg MS Q **PHENOLS** phénol (indice) <0.1 <0.1 <0.1 mg/kg MS Q <0.1 < 0.1 **DIVERSES ANALYSES CHIMIQUES** fluorures mg/kg MS Q 3.5 46 7.0 2.6 4.4

Les analyses notées Q sont accréditées par le RvA.

mg/kg MS

mg/kg MS

Q

<10

560

Code	Matrice	Réf. échantillon
037	Sol	Eluat D5
038	Sol	Eluat E1
039	Sol	Eluat F1
040	Sol	Eluat F2
041	Sol	Eluat F3

200

1100

<10

chlorures

sulfate

ne:

12

810

<10

430

NIEP110012

11719980 - 1

ANTEA GROUP (Agence Paris Centre Normandie)

Florent BARBAULT Rapport d'analyse

SMURFIT /FONDERIE VERNON

Page 26 sur 62

Date de début 14-10-2011

Rapport du 09-11-2011

Date de commande 13-10-2011

Comments

6

Référence du projet

Réf. du rapport

Projet

Le résultat ne répond pas aux critères définis concernant le poids constant. La dernière pesée, après trois séchages, a été rapportée avec un remarque selon l'EN 15216.

Paraphe :

Florent BARBAULT

Référence du projet

Rapport d'analyse

Page 27 sur 62

Projet SMURFIT /FONDERIE VERNON

NIEP110012

Réf. du rapport 11719980 - 1

Date de début 14-10-2011 Rapport du 09-11-2011

Date de commande 13-10-2011

Analyse	Unité	Q	042
СОТ	mg/kg MS	Q	<50
	mg/ng mo	•	400
conductivité ap. lix.	μS/cm	Q	98
pH final ap. lix.	-	Q	8.63
température pour mes. pH	°C		19.8
LIXIVIATION			
L/S	ml/g		10.00
	. 5		
METAUX			
antimoine	mg/kg MS	Q	< 0.039
arsenic	mg/kg MS	Q	<0.1
baryum	mg/kg MS	Q	<0.1
cadmium	mg/kg MS	Q	<0.01
chrome	mg/kg MS	Q	<0.1
cuivre	mg/kg MS	Q	<0.1
mercure	mg/kg MS	Q	<0.001
plomb	mg/kg MS	Q	<0.1
molybdène	mg/kg MS	Q	<0.10
nickel	mg/kg MS	Q	<0.1
sélénium	mg/kg MS	Q	< 0.039
zinc	mg/kg MS	Q	<0.2
COMPOSES INORGANIQUE	ES .		
fraction soluble	mg/kg MS	Q	<500
	3 3		
PHENOLS			
phénol (indice)	mg/kg MS	Q	<0.1
DIVERSES ANALYSES CHIR	MIQUES		
fluorures	mg/kg MS	Q	<2
chlorures	mg/kg MS	Q	<10
sulfate	mg/kg MS	Q	230

Code	Matrice	Réf. échantillon
042	Sol	Eluat D4

Florent BARBAULT

Rapport d'analyse

Page 28 sur 62

 Projet
 SMURFIT /FONDERIE VERNON
 Date de commande 13-10-2011

 Référence du projet
 NIEP110012
 Date de début 14-10-2011

 Réf. du rapport
 11719980 ° 1
 Rapport du 09-11-2011

Analyse	Matrice	Référence normative
matière sèche	Sol	Equivalent à NEN-ISO 11465, Conforme à la norme OVAM CMA 2/II/A.1
arsenic	Sol	Méthode interne (destruction conforme à NEN 6961, analyse conforme à ISO 22036)
cadmium	Sol	Idem
chrome	Sol	Idem
cuivre	Sol	Idem
mercure	Sol	Conforme à NEN 6950 (destruction conforme à NEN 6961, analyse conforme à NEN-ISO 16772)
plomb	Sol	Méthode interne (destruction conforme à NEN 6961, analyse conforme à ISO 22036)
nickel	Sol	Idem
zinc	Sol	Idem
benzène	Sol	Méthode interne, Headspace GCMS
toluène	Sol	Idem
éthylbenzène	Sol	Idem
orthoxylène	Sol	Idem
para- et métaxylène	Sol	ldem
xylènes	Sol	Idem
naphtalène	Sol	Méthode interne, extraction acétone-hexane, analyse par GC-MS
acénaphtylène	Sol	Idem
acénaphtène	Sol	Idem
fluorène	Sol	Idem
phénanthrène	Sol	Idem
anthracène	Sol	Idem
fluoranthène	Sol	Idem
pyrène	Sol	ldem
benzo(a)anthracène	Sol	Idem
chrysène	Sol	Idem
benzo(b)fluoranthène	Sol	ldem
benzo(k)fluoranthène	Sol	ldem
benzo(a)pyrène	Sol	Idem
dibenzo(ah)anthracène	Sol	ldem
benzo(ghi)pérylène	Sol	ldem
indéno(1,2,3-cd)pyrène	Sol	Idem
1,2-dichloroéthane	Sol	Méthode interne, Headspace GCMS
1,1-dichloroéthène	Sol	Idem
cis-1,2-dichloroéthène	Sol	Idem
trans 1,2-dichloroéthylène	Sol	Idem
dichlorométhane	Sol	Idem
1,2-dichloropropane	Sol	Idem
tétrachloroéthylène	Sol	Idem
tétrachlorométhane	Sol	Idem
1,1,1-trichloroéthane	Sol	Idem
trichloroéthylène	Sol	Idem
chloroforme	Sol	Idem
chlorure de vinyle	Sol	Idem
hexachlorobutadiène	Sol	Méthode interne, Headspace GCMS
bromoforme	Sol	Idem
fraction C10-C12	Sol Sol	Méthode interne, extraction acetone/hexane, analyse par GC/FID
fraction C12-C16		Idem
fraction C16 - C21	Sol	Idem
fraction C21 - C40	Sol	Idem

Florent BARBAULT

Rapport d'analyse

Page 29 sur 62

 Projet
 SMURFIT /FONDERIE VERNON
 Date de commande 13-10-2011

 Référence du projet
 NIEP110012
 Date de début 14-10-2011

 Réf. du rapport
 11719980 ° 1
 Rapport du 09-11-2011

hydrocarbures totaux C10-C40	Analyse	Matrice	Référence normative
Dioxines (PCDIPCDF) Sol Analyse sous-statile COT Sol Conforme a NIN-NS 13137 p.H (KC) Sol Conforme a NIN-NS 1013930 / conforme a CMA 21I/LA 20 Liviviation 24 - NF-EN-12457-2 Sol Conforme a NIN-NS 1013930 / conforme a CMA 21I/LA 20 PCB 22 Sol Methods interns, extraction acétone/pentare, analyse GCMS PCB 110 Sol Idem PCB 118 Sol Idem PCB 138 Sol Idem PCB 139 Sol Idem PCB 1400 Sol Idem PCB 153 Sol Idem PCB 1600 Sol Idem VED 1600 Sol Idem VED 1700 Sol Idem VED 1700 Sol Idem VED 1700 Sol Internate Idem VED 1700	hydrocarbures totaux C10-C40	Sol	ldem
COT Sol Conforme à NR-NE (13137) Likvistation 24+ NF-EN-12457-2 Sol Conforme à NR-NE (12457-2), conforme CMA 27ll/A. 20 PCB 28 Sol Méthode interne, extraction acétone/pentane, analyse GCMS PCB 52 Sol Idem PCB 101 Sol Idem PCB 138 Sol Idem PCB 138 Sol Idem PCB 150 Sol Idem PCB 1610 Sol Idem PCB 1610 Sol Idem PCB 1610 Sol Idem PCB 1610 Sol Idem benzéne Eau souterraine Idem tolubre Eau souterraine Idem éthybenzène Eau souterraine Idem para- et métacylène Eau souterraine Idem para- et métacylène Eau souterraine Idem prénentraine Eau souterraine Idem Illorainthène Eau souterraine Idem Illorainthène Eau souterraine Idem I	·		
pH (MCD) Sal Conforma à NEN-RS 10380 / conforma à CMA 2014A 20 Lobridation 24h - NF-EN-12457-2 Sol Conforma à NEN-RS 11457-2, conforme à CMA 2014A 20 PCB 28 Sol Méthode interne, extraction acétone/pentane, analyse GCMS PCB 101 Sol Idem PCB 118 Sol Idem PCB 153 Sol Idem PCB 1580 Eau souterraine Idem Ichuración Eau souterraine Idem			·
Lixivisation 24+ NF-EN-12457-2 Sol Conforme a NR-EN 12457-2, conforme CMA 2014A-19 PCB 25 Sol Méthode interne, extraction acétone/pentane, analyse GCMS PCB 101 Sol Idem PCB 118 Sol Idem PCB 138 Sol Idem PCB 159 Sol Idem PCB 160 Sol Idem PCB 1610x(7) Sol Idem benzeñe Eau souterraine Idem toluéne Eau souterraine Idem éthylbenzène Eau souterraine Idem para- et métasylène Eau souterraine Idem para- et métasylène Eau souterraine Idem para- et métasylène Eau souterraine Idem acinaphtyène Eau souterraine Idem acinaphtyène Eau souterraine Idem fluorantène Eau souterraine Idem fluorantène Eau souterraine Idem fluorantène Eau souterraine Idem pérantènène Eau souterraine			
PCB 22 Sol Méthodie interne, extraction acétone/pentane, analyse GCMS PCB 101 Sol Idem PCB 118 Sol Idem PCB 138 Sol Idem PCB 153 Sol Idem PCB 160 Sol Idem PCB 1810 Sol of Idem Idem Invalence Eau souterraine Idem Industrial Idem Idem Invalence Eau souterraine Idem Invariable Eau souterraine Idem Invariable Eau souterraine Idem Invariable Eau souterraine Idem Invariable <	. , ,		
PCB 22 Sol Idem PCB 118 Sol Idem PCB 138 Sol Idem PCB 138 Sol Idem PCB 150 Sol Idem PCB 1610 Sol Idem PCR 1610x (7) Sol Idem benzène Eu souterraine Idem éthylbenzène Eau souterraine Idem éthylbenzène Eu souterraine Idem éthylbenzène Eu souterraine Idem éthylbenzène Eu souterraine Idem éthylbenzène Eu souterraine Idem para- et méaxyène Eu souterraine Idem para- et méaxyène Eu souterraine Idem fluorenhe Eu souterraine Idem fluorenhe Eu souterraine Idem fluorenhène Eu souterraine Idem benzo(s)pintracène Eu souterraine Idem benzo(s)pintracène Eu souterraine Idem benzo(s)pyrène Eu souterraine		Sol	
PCB 101 Sol Idem PCB 138 Sol Idem PCB 133 Sol Idem PCB 130 Sol Idem PCB 150 Sol Idem PCB 150 Sol Idem PCB 150 (aux (7) Sol Idem PCB 150 (aux (7) Sol of Idem Idem benzéne Eau souterraine Idem toluène Eau souterraine Idem orthoxyéne Eau souterraine Idem para et métaryéne Eau souterraine Idem syénes Eau souterraine Idem acénaphtène Eau souterraine Idem fluorine Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(plituroanthène Eau souterraine Idem benzo(plituroanthène Eau souterraine Idem benzo(plituroanthène Eau souterraine Idem benzo(plituroanthène Eau soute	PCB 52	Sol	
PCB 118 Sol Idem PCB 153 Sol Idem PCB 150 Sol Idem PCB 150 Sol Idem PCB 150 Sol Idem PCB 150 Sol Idem benzène Eau souterraine Méthode interne, headspace GCMS toluène Eau souterraine Idem éthylenzène Eau souterraine Idem para - et métaxylène Eau souterraine Idem acénaphylène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(phylène Eau souterraine Idem benzo(phylène Eau souterraine Idem benzo(phylène Eau souterraine Idem			
PCB 138 Sol Idem PCB 150 Sol Idem PCB 160 Sol Idem PCB 1610 Sol Idem PCB 1610 Sol Idem PCB 1620 Sol Idem PCB 1630 Sol souteraine Idem follying Eau souteraine Idem orhoxylêne Eau souteraine Idem sylènes Eau souteraine Idem soénaphténe Eau souteraine Idem lourème Eau souteraine Idem lourème Eau souteraine Idem lourème Eau souteraine Idem lourème Eau souteraine Idem prémantivène Eau souteraine Idem préme Eau souteraine Idem benzo(s)intracène Eau souteraine Idem benzo(s)intracène Eau souteraine Idem benzo(s)intracène Eau souteraine Idem benzo(s)intracène Eau souteraine Idem <td></td> <td></td> <td></td>			
PCB 101aux (7) Sol Idem PCB totaux (7) Sol Idem benzène Eau souterraine Méthode interne, headspace GCMS toluène Eau souterraine Idem éthylbenzène Eau souterraine Idem para- et métaxylène Eau souterraine Idem xylènes Eau souterraine Idem acénaphylène Eau souterraine Idem acénaphylène Eau souterraine Idem fluorèné Eau souterraine Idem fluorèné Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(a)antracène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(b)flu			
PCB totaux (7) Sol Idem benzène Eau souterraine Méthode interne, headspace GCMS tolulene Eau souterraine Idem éthylienzène Eau souterraine Idem orthoxylène Eau souterraine Idem para- et métaxylène Eau souterraine Idem para- et métaxylène Eau souterraine Idem acénaphtylène Eau souterraine Idem acénaphtylène Eau souterraine Idem fluorène Eau souterraine Idem fluorène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(s)(a)mitracène Eau souterraine Idem benzo(s)(hilouranthène Eau souterraine Idem benzo(s)(hilouranthène Eau souterraine Idem benzo(s)(hilouranthène Eau souterraine Idem benzo(s)(hiloryèrène Eau souterraine Idem benzo(s)(hipéryène Eau souterraine Idem <	PCB 153	Sol	Idem
PCB totaux (7) Sol Idem benzène Eau souterraine Méthode interne, headspace GCMS tolulene Eau souterraine Idem éthylienzène Eau souterraine Idem orthoxylène Eau souterraine Idem para- et métaxylène Eau souterraine Idem para- et métaxylène Eau souterraine Idem acénaphtylène Eau souterraine Idem acénaphtylène Eau souterraine Idem fluorène Eau souterraine Idem fluorène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(s)(a)mitracène Eau souterraine Idem benzo(s)(hilouranthène Eau souterraine Idem benzo(s)(hilouranthène Eau souterraine Idem benzo(s)(hilouranthène Eau souterraine Idem benzo(s)(hiloryèrène Eau souterraine Idem benzo(s)(hipéryène Eau souterraine Idem <			
benzène Eau souterraine Idem follune Eau souterraine Idem éthylbenzène Eau souterraine Idem para- et métaxylène Eau souterraine Idem xylènes Eau souterraine Idem para- et métaxylène Eau souterraine Idem para- et métaxylène Eau souterraine Idem ducénaphténe Eau souterraine Idem fluorène Eau souterraine Idem fluorène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(ph)fluoranthène Eau souterraine Idem <t< td=""><td></td><td></td><td></td></t<>			
toluène Eau souterraine Idem éthylbenzène Eau souterraine Idem orthoxylène Eau souterraine Idem para et métaxylène Eau souterraine Idem xylènes Eau souterraine Idem acénaphtylène Eau souterraine Idem acénaphtène Eau souterraine Idem fluorène Eau souterraine Idem fluorent Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem benzo(a) Illuoranthène Eau souterraine Idem benzo(b) Illuoranthène Eau souterraine Idem benzo(b) Illuoranthène Eau souterraine Idem benzo(a) pyrène Eau souterraine Idem benzo(a) pyrène Eau souterraine Idem benzo(b) Illuoranthène Eau souterraine Idem benzo(b) Illuoranthène Eau souterraine Idem benz	` '		
éthylbenzène Eau souterraine Idem orhoxyène Eau souterraine Idem para- et métaxyène Eau souterraine Idem xyènes Eau souterraine Idem naphtalène Eau souterraine Idem acénaphtyène Eau souterraine Idem flourène Eau souterraine Idem phénanthrène Eau souterraine Idem flouranthène Eau souterraine Idem flouranthène Eau souterraine Idem phénanthrène Eau souterraine Idem ponzo(a)anthracène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(a)phyène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem Idem Ide			·
orthoxylène Eau souterraine Idem para et métaxylène Eau souterraine Idem xylènes Eau souterraine Idem naphtalène Eau souterraine Méthode interne acénaphtylène Eau souterraine Idem fluorène Eau souterraine Idem phénanthrène Eau souterraine Idem phénanthrène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrêne Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(a)Iltuoranthène Eau souterraine Idem benzo(k)Iltuoranthène Eau souterraine Idem			
para- et métaxylène Eau souterraine Idem xylènes Eau souterraine Idem naphtalène Eau souterraine Méthode interne acénaphtylène Eau souterraine Idem flourène Eau souterraine Idem flourène Eau souterraine Idem phénanthrène Eau souterraine Idem flouranthène Eau souterraine Idem flouranthène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(phi)pérylène Eau souterraine Idem benzo(phi)pérylène Eau souterraine Idem benzo(phi)pérylène Eau souterraine Idem	· ·		
xylènes Eau souterraine Idem Méthode interne acénaphtyène Eau souterraine Idem Idem Idem Idem Idem Idem Idem Ide	=		
naphtalène Eau souterraine Idem acénaphtylène Eau souterraine Idem fluorène Eau souterraine Idem fluorène Eau souterraine Idem fluorène Eau souterraine Idem phénanthrène Eau souterraine Idem fluoranthrène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem ebenzo(a)anthracène Eau souterraine Idem ebenzo(b)fluoranthène Eau souterraine Idem ebenzo(b)fluoranthène Eau souterraine Idem ebenzo(b)fluoranthène Eau souterraine Idem ebenzo(a)pyrène Eau souterraine Idem ebenzo(a)pyrène Eau souterraine Idem ebenzo(a)pyrène Eau souterraine Idem ebenzo(ph)anthracène Eau souterraine Idem ebenzo(ph)anthracène Eau souterraine Idem ebenzo(ph)aprèylène Eau souterraine Idem Idem Idem Idem Idem Idem Idem Idem			
acénaphtylène Eau souterraine Idem dochaphtène Eau souterraine Idem fluorène Eau souterraine Idem phénanthrène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem HAP totaux (16) * EPA Eau souterraine Idem HAP totaux (16) * EPA Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem dichloroéthène Eau souterraine Idem dichloropropane Eau souterraine Idem dichloropropane Eau souterraine Idem	•		
acénaphène Eau souterraine Idem fluorène Eau souterraine Idem phénanthrène Eau souterraine Idem anthracène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)prène Eau souterraine Idem benzo(k)prènène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem	·		
fluorène Eau souterraine Idem phénanthrène Eau souterraine Idem anthracène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(a)yrène Eau souterraine Idem dibenzo(a)hanthracène Eau souterraine Idem benzo(a)pryène Eau souterraine Idem dibenzo(a)hanthracène Eau souterraine Idem benzo(a)pryène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem 1,2-dichloroéthene Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem 1,2-dichloropropène Eau souterraine Idem </td <td></td> <td></td> <td></td>			
phénanthrène Eau souterraine Idem anthracène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem dibenzo(a)hyprène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem indéno(1,2,3-d)pyrène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem dichloroéthène Eau souterraine Idem dichlororoéthène Eau souterraine Idem dichlororoéthène Eau souterraine Idem dichlororoéthène Eau souterraine Idem	•		
anthracène Eau souterraine Idem fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem dibenzo(ah)anthracène Eau souterraine Idem benzo(ah)pyrène Eau souterraine Idem benzo(ah)pyrène Eau souterraine Idem dibenzo(ah)northène Eau souterraine Idem har totaux (10) VROM Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthàne Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,1-dichlorofropopene Eau souterraine Idem 1,1-dichlorofropopene Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem			
fluoranthène Eau souterraine Idem pyrène Eau souterraine Idem benzo(a)anthracène Eau souterraine Idem chrysène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthàne Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloroéthyène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloroéthyène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,1-1-fichloroéthyène Eau souterraine Idem 1,1-1-fichloroéthyène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachloroéthyène Eau souterraine Idem tholorofeme Eau souterraine Idem chlorofeme Eau souterraine Idem	•		
pyrèneEau souterraineIdembenzo(a)anthracèneEau souterraineIdemchrysèneEau souterraineIdembenzo(b)fluoranthèneEau souterraineIdembenzo(a)pyrèneEau souterraineIdembenzo(a)pyrèneEau souterraineIdemdibenzo(a)nanthracèneEau souterraineIdembenzo(ghi)pérylèneEau souterraineIdembenzo(ghi)pérylèneEau souterraineIdemHAP totaux (10) VROMEau souterraineIdemHAP totaux (16) - EPAEau souterraineIdem1,2-dichloroéthàneEau souterraineIdemcis-1,2-dichloroéthèneEau souterraineIdemcis-1,2-dichloroéthèneEau souterraineIdemtrans 1,2-dichloroéthèneEau souterraineIdemdichlorométhaneEau souterraineIdemdichloropropaneEau souterraineIdemdichloropropèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtétrachlorométhaneEau souterraineIdemtétrachlorométhaneEau souterraineIdemtétrachlorométhaneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdem			
benzo(a)anthracène Eau souterraine Idem chrysène Eau souterraine Idem benzo(b)fluoranthène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem dibenzo(a)pyrène Eau souterraine Idem dibenzo(ah)anthracène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem har benzo(ghi)pérylène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropane Eau souterraine Idem tétrachlorofethylène Eau souterraine Idem chloroferme Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem			
chrysèneEau souterraineIdembenzo(k)fluoranthèneEau souterraineIdembenzo(k)fluoranthèneEau souterraineIdembenzo(a)pyrèneEau souterraineIdemdibenzo(ah)anthracèneEau souterraineIdembenzo(ghi)pérylèneEau souterraineIdemindéno(1,2,3-cd)pyrèneEau souterraineIdemHAP totaux (10) VROMEau souterraineIdemHAP totaux (16) - EPAEau souterraineIdem1,2-dichloroéthaneEau souterraineIdem1,1-dichloroéthèneEau souterraineIdemcis-1,2-dichloroéthèneEau souterraineIdemtrans 1,2-dichloroéthèneEau souterraineIdemdichlorométhaneEau souterraineIdem1,2-dichloroéthylèneEau souterraineIdemdichloropropaneEau souterraineIdem1,3-dichloropropaneEau souterraineIdemtétrachlorométhaneEau souterraineIdem1,1,1-trichloroéthylèneEau souterraineIdemtétrachlorométhaneEau souterraineIdem1,1,1-trichloroéthylèneEau souterraineIdemtétrachlorométhaneEau souterraineIdem1,1,1-trichloroéthylèneEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdem	• •		
benzo(b)fluoranthène Eau souterraine Idem benzo(k)fluoranthène Eau souterraine Idem benzo(a)pyrène Eau souterraine Idem dibenzo(ah)anthracène Eau souterraine Idem benzo(phi)pérylène Eau souterraine Idem indéno(1,2,3-cd)pyrène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,1-dichloroéthane Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem dichloroéthène Eau souterraine Idem dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachloroéthane Eau souterraine Idem tétrachloroéthane Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachloroéthylène			
benzo(k)fluoranthèneEau souterraineIdembenzo(a)pyrèneEau souterraineIdemdibenzo(ah)anthracèneEau souterraineIdembenzo(ghi)pérylèneEau souterraineIdemindéno(1,2,3-cd)pyrèneEau souterraineIdemHAP totaux (10) VROMEau souterraineIdemHAP totaux (16) - EPAEau souterraineIdem1,2-dichloroéthaneEau souterraineIdem1,2-dichloroéthèneEau souterraineIdemcis-1,2-dichloroéthèneEau souterraineIdemdichloroéthyèneEau souterraineIdemdichloroéthyèneEau souterraineIdem1,2-dichloropropaneEau souterraineIdem1,2-dichloropropaneEau souterraineIdem1,3-dichloropropèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtitrichloroéthylèneEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdem			
benzo(a)pyrèneEau souterraineIdemdibenzo(ah)anthracèneEau souterraineIdembenzo(ghi)pérylèneEau souterraineIdemindéno(1,2,3-cd)pyrèneEau souterraineIdemHAP totaux (10) VROMEau souterraineIdemHAP totaux (16) - EPAEau souterraineIdem1,2-dichloroéthaneEau souterraineIdem1,1-dichloroéthèneEau souterraineIdemcis-1,2-dichloroéthèneEau souterraineIdemtrans 1,2-dichloroéthèneEau souterraineIdemdichlorométhaneEau souterraineIdem1,2-dichloropropaneEau souterraineIdem1,3-dichloropropaneEau souterraineIdem1,3-dichloropropèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdem1,1,1-trichloroéthaneEau souterraineIdemtrichloroéthylèneEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdemchloroformeEau souterraineIdem			
dibenzo(ghi)pérylène Eau souterraine Idem benzo(ghi)pérylène Eau souterraine Idem indéno(1,2,3-cd)pyrène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthane Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem 1,1-dichloropropène Eau souterraine Idem 1,1-dichloropropène Eau souterraine Idem 1,1-dichloropropène Eau souterraine Idem 1,1-dichloropropène Eau souterraine Idem 1,1-tirchloroéthylène Eau souterraine Idem 1,1-tirchloroéthane Eau souterraine Idem 1,1-tirchloroéthane Eau souterraine Idem 1,1-tirchloroéthane Eau souterraine Idem 1,1-tirchloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem			
benzo(ghi)pérylène Eau souterraine Idem Indéno(1,2,3-cd)pyrène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthane Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropane Eau souterraine Idem 1,3-dichloropopane Eau souterraine Idem tétrachloropéthyène Eau souterraine Idem tétrachloropéthyène Eau souterraine Idem tétrachloropéthyène Eau souterraine Idem tétrachloropéthyène Eau souterraine Idem titrachloropéthyène Eau souterraine Idem titrachloropéthane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthyène Eau souterraine Idem chloroforme Eau souterraine Idem			
indéno(1,2,3-cd)pyrène Eau souterraine Idem HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthane Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropéthène Eau souterraine Idem 1,2-dichloropéthène Eau souterraine Idem 1,3-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem 1,1,1-trichloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem	·		
HAP totaux (10) VROM Eau souterraine Idem HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthane Eau souterraine Idem 1,1-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloroéthène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloropropène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachlorométhane Eau souterraine Idem tétrachlorométhane Eau souterraine Idem titrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem	· - ·· ·		
HAP totaux (16) - EPA Eau souterraine Idem 1,2-dichloroéthane Eau souterraine Méthode interne, headspace GCMS 1,1-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthylène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem titrichloroéthane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem Idem			
1,2-dichloroéthane Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthylène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem			
1,1-dichloroéthène Eau souterraine Idem cis-1,2-dichloroéthène Eau souterraine Idem trans 1,2-dichloroéthylène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem			
cis-1,2-dichloroéthylène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem 1,3-dichloroprène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem			·
trans 1,2-dichloroéthylène Eau souterraine Idem dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem	,		
dichlorométhane Eau souterraine Idem 1,2-dichloropropane Eau souterraine Idem 1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chloroforme Eau souterraine Idem chlorure de vinyle Eau souterraine Idem			
1,2-dichloropropaneEau souterraineIdem1,3-dichloropropèneEau souterraineIdemtétrachloroéthylèneEau souterraineIdemtétrachlorométhaneEau souterraineIdem1,1,1-trichloroéthaneEau souterraineIdemtrichloroéthylèneEau souterraineIdemchloroformeEau souterraineIdemchlorure de vinyleEau souterraineIdem	· ·		
1,3-dichloropropène Eau souterraine Idem tétrachloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chlorure de vinyle Eau souterraine Idem			
tétrachloroéthylène Eau souterraine Idem tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chlorure de vinyle Eau souterraine Idem	• •		
tétrachlorométhane Eau souterraine Idem 1,1,1-trichloroéthane Eau souterraine Idem trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chlorure de vinyle Eau souterraine Idem			
1,1,1-trichloroéthaneEau souterraineIdemtrichloroéthylèneEau souterraineIdemchloroformeEau souterraineIdemchlorure de vinyleEau souterraineIdem	-		
trichloroéthylène Eau souterraine Idem chloroforme Eau souterraine Idem chlorure de vinyle Eau souterraine Idem			
chloroforme Eau souterraine Idem chlorure de vinyle Eau souterraine Idem	, ,		
chlorure de vinyle Eau souterraine Idem	·		
·			
	hexachlorobutadiène	Eau souterraine	Idem

11719980 - 1

ANTEA GROUP (Agence Paris Centre Normandie)

Florent BARBAULT

Réf. du rapport

Rapport d'analyse

Page 30 sur 62

Rapport du

SMURFIT /FONDERIE VERNON Proiet Date de commande 13-10-2011 Référence du projet NIEP110012 Date de début 14-10-2011 09-11-2011

Analyse Matrice Référence normative bromoforme Eau souterraine PCB 28 Eau souterraine Méthode interne, LVI GCMS PCB 52 Idem Fau souterraine PCB 101 Eau souterraine Idem **PCB 118** Eau souterraine Idem PCB 138 Eau souterraine Idem **PCB 153** Eau souterraine Idem **PCB 180** Eau souterraine Idem hydrocarbures totaux C10-C40 Eau souterraine Méthode interne, extraction hexane, analyse par GC-FID Conforme à NEN-ISO 11465 matière sèche Amiante suspectée COT Amiante suspectée TOC en fonction du contenue de la matiere organique (NEN5754) pH (KCI) Conforme à NEN-ISO 10390 / conforme à CMA 2/II/A.20 Amiante suspectée Lixiviation 24h - NF-EN-12457-2 Amiante suspectée Conforme à NEN 12457-2 Méthode interne, Headspace GCMS benzène Amiante suspectée toluène Amiante suspectée éthylbenzène Amiante suspectée Idem Idem xvlènes Amiante suspectée naphtalène Amiante suspectée Méthode interne, extraction acétone-hexane, analyse par GC-MS acénaphtylène Amiante suspectée Idem acénaphtène Amiante suspectée Idem fluorène Amiante suspectée Idem phénanthrène Amiante suspectée Idem anthracène Amiante suspectée Idem fluoranthène Amiante suspectée Idem pyrène Amiante suspectée Idem benzo(a)anthracène Amiante suspectée Idem chrysène Amiante suspectée Idem benzo(b)fluoranthène Amiante suspectée Idem benzo(k)fluoranthène Amiante suspectée benzo(a)pyrène Amiante suspectée Idem dibenzo(ah)anthracène Idem Amiante suspectée benzo(ghi)pérylène Amiante suspectée Idem indéno(1,2,3-cd)pyrène Amiante suspectée Idem **PCB 28** Amiante suspectée Méthode interne, extraction acétone/pentane, analyse GCMS PCB 52 Amiante suspectée Idem PCB 101 Amiante suspectée Idem **PCB 118** Amiante suspectée Idem PCB 138 Amiante suspectée Idem PCB 153 Amiante suspectée Idem PCB 180 Amiante suspectée Idem PCB totaux (7) Amiante suspectée hydrocarbures totaux C10-C40 Amiante suspectée Méthode interne, extraction acetone/hexane, analyse par GC/FID air (tubes/badges) Méthode interne (GCMS) benzène toluène air (tubes/badges) Méthode interne éthylbenzène air (tubes/badges) Idem orthoxylène air (tubes/badges) Méthode interne para- et métaxylène air (tubes/badges) Idem xylènes air (tubes/badges) Méthode interne air (tubes/badges) **NIOSH 5506** naphtalène anthracène air (tubes/badges) Idem

phénanthrène

Idem

air (tubes/badges)

Florent BARBAULT

Rapport d'analyse

Page 31 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011
Référence du projet NIEP110012 Date de début 14-10-2011

Réf. du rapport 11719980 - 1 Rapport du 09-11-2011

Analyse	Matrice	Référence normative	
fluoranthène	air (tubes/badges)	ldem	
benzo(a)anthracène	air (tubes/badges)	ldem	
chrysène	air (tubes/badges)	ldem	
benzo(a)pyrène	air (tubes/badges)	ldem	
benzo(ghi)pérylène	air (tubes/badges)	Idem	
benzo(k)fluoranthène	air (tubes/badges)	ldem	
indéno(1,2,3-cd)pyrène	air (tubes/badges)	ldem	
acénaphtylène	air (tubes/badges)	ldem	
acénaphtène	air (tubes/badges)	Idem	
fluorène	air (tubes/badges)	Idem	
pyrène	air (tubes/badges)	ldem	
benzo(b)fluoranthène	air (tubes/badges)	Idem	
dibenzo(ah)anthracène	air (tubes/badges)	Idem	
1,2-dichloroéthane	air (tubes/badges)	Méthode interne (GCMS)	
1,1-dichloroéthène	air (tubes/badges)	Idem	
cis-1,2-dichloroéthène	air (tubes/badges)	Idem	
trans 1,2-dichloroéthylène	air (tubes/badges)	Méthode interne	
dichlorométhane	air (tubes/badges)	Méthode interne (GCMS)	
1,2-dichloropropane	air (tubes/badges)	Idem	
1,3-dichloropropène	air (tubes/badges)	Idem	
tétrachloroéthylène	air (tubes/badges)	Idem	
tétrachlorométhane	air (tubes/badges)	ldem	
1,1,1-trichloroéthane	air (tubes/badges)	Idem	
trichloroéthylène	air (tubes/badges)	Méthode interne	
chloroforme	air (tubes/badges)	Méthode interne (GCMS)	
chlorure de vinyle	air (tubes/badges)	Méthode interne	
hexachlorobutadiène	air (tubes/badges)	Idem	
bromoforme	air (tubes/badges)	Méthode interne (GCMS)	
fraction C6 - C8	air (tubes/badges)	Méthode interne	
fraction C8 - C10	air (tubes/badges)	Méthode interne (GCMS)	
fraction C10-C12	air (tubes/badges)	Méthode interne	
fraction C12-C16	air (tubes/badges)	Idem	
hydrocarbures volatils C6-C16	air (tubes/badges)	Méthode interne	
COT	Eluat (mg/kg msl) Eluat	Conforme AP04-E-XX, Conforme NEN-EN 1484	
conductivité ap. lix.	Eluat (mg/kg msl) Eluat	Conforme à NEN-ISO 7888	
pH final ap. lix.	Eluat (mg/kg msl) Eluat	Conforme à NEN-ISO 10523 en CMA 2/I/A.1	
antimoine	Eluat (mg/kg msl) Eluat	Conforme à NEN 6966	
arsenic	Eluat (mg/kg msl) Eluat	Idem	
baryum	Eluat (mg/kg msl) Eluat	Idem	
cadmium	Eluat (mg/kg msl) Eluat	Idem	
chrome	Eluat (mg/kg msl) Eluat	Idem	
cuivre	Eluat (mg/kg msl) Eluat	Idem	
mercure	Eluat (mg/kg msl) Eluat	NEN-EN-ISO 17852, conforme OVAM-method CMA 2/I/B.3	
plomb	Eluat (mg/kg msl) Eluat	Conforme à NEN 6966	
molybdène	Eluat (mg/kg msl) Eluat	Idem	
nickel	Eluat (mg/kg msl) Eluat	Idem	
sélénium	Eluat (mg/kg msl) Eluat	Idem	
zinc	Eluat (mg/kg msl) Eluat	Idem	
fraction soluble	Eluat (mg/kg msl) Eluat	Conforme à NEN-EN 15216	
phénol (indice)	Eluat (mg/kg msl)	Conforme a NEN-EN 15216 Conforme a NEN-EN-ISO 14402	
fluorures	Eluat (mg/kg msl) Eluat	Conforme à NEN 6483	

Florent BARBAULT Rapport d'analyse

Page 32 sur 62

Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011

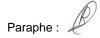
Date de début 14-10-2011

Rapport du 09-11-2011

Analyse		Matrice		Référenc	e normative	
chlorures sulfate		Eluat (mg/kg msl) Eluat Eluat (mg/kg msl) Eluat		Basé sur NEN-ISO 10304-1 Idem		
Code	Code barres	Date de réception	Date prelèvement	Flaconna	nge	
001	V6269332	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
002	V6269014	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
003	V6269024	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
003	V6269028	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
004	V6269017	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
004	V6269029	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
005	V6269412	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
006	V6269391	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
006	V6269408	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
007	V6269635	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
008	V6269351	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
008	V6269379	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
009	V6269328	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
009	V6269374	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
010	V6269384	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
010	V6269387	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
011	V6269358	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
012	V6269317	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
013	V6269378	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
013	V6269381	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
014	V6269376	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
014	V6269389	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
015	V6269626	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
015	V6269633	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
016	T9216426	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
016	T9216427	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
017	T9216424	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
017	T9216425	14-10-2011	14-10-2011	ALC201	Date de prélèvement théorique	
018	G9816624	14-10-2011	14-10-2011	ALC236	Date de prélèvement théorique	
018	S9254427	14-10-2011	14-10-2011	ALC237	Date de prélèvement théorique	
019	G9816629	14-10-2011	14-10-2011	ALC236	Date de prélèvement théorique	
019	S9254415	14-10-2011	14-10-2011	ALC237	Date de prélèvement théorique	
020	G9816625	14-10-2011	14-10-2011	ALC236	Date de prélèvement théorique	
020	S9254421	14-10-2011	14-10-2011	ALC237	Date de prélèvement théorique	
021	K1119618	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	
021	K1119657	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	
022	K1119594	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	
023	K1119591	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	
023	K1119592	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	
024	K1119593	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	
025	K1119588	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique	

B

Florent BARBAULT


Rapport d'analyse

Page 33 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011 Référence du projet NIEP110012 Date de début 14-10-2011

Réf. du rapport 11719980 - 1 Rapport du 09-11-2011

Code	Code barres	Date de réception	Date prelèvement	Flaconna	ge
025	K1119589	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique
026	K1119642	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique
)27	K1119641	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique
28	K1119640	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique
29	K1119639	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique
30	K1119638	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique
31	K1119603	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique

Florent BARBAULT

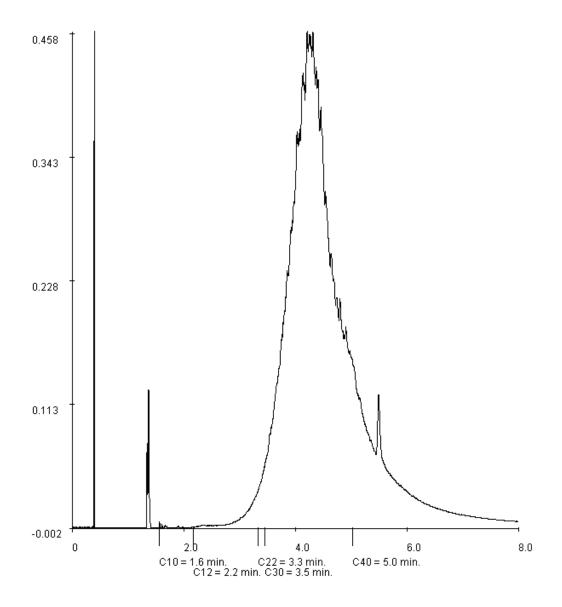
Rapport d'analyse

Page 34 sur 62

Projet SMURFIT /FONDERIE VERNON

Date de début 14-10-2011

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1


Rapport du 09-11-2011

Date de commande 13-10-2011

Référence de l'échantillon: 004 Information relative aux échantillons S4 (0-1)

Détermination de la chaîne de carbone

C9-C14
C10-C16
C10-C28
C20-C36
C10-C36

Florent BARBAULT

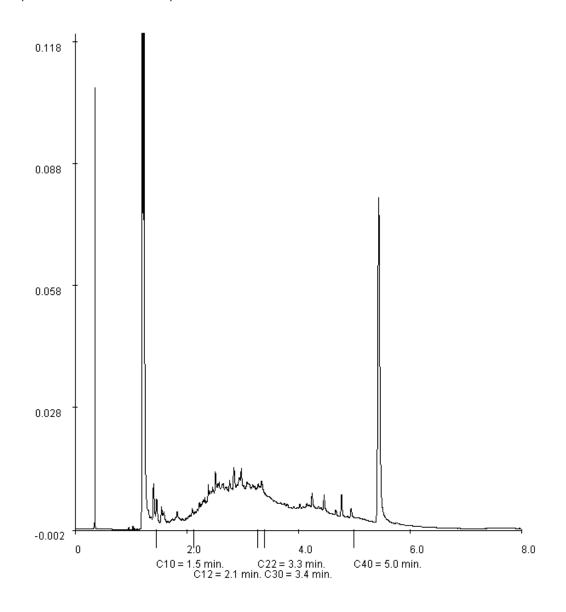
Rapport d'analyse

Page 35 sur 62

Date de commande 13-10-2011

14-10-2011

SMURFIT /FONDERIE VERNON Projet Référence du projet


NIEP110012 Date de début

Rapport du 09-11-2011 Réf. du rapport 11719980 - 1

Référence de l'échantillon: 005 Information relative aux échantillons S5 (0-1)

Détermination de la chaîne de carbone

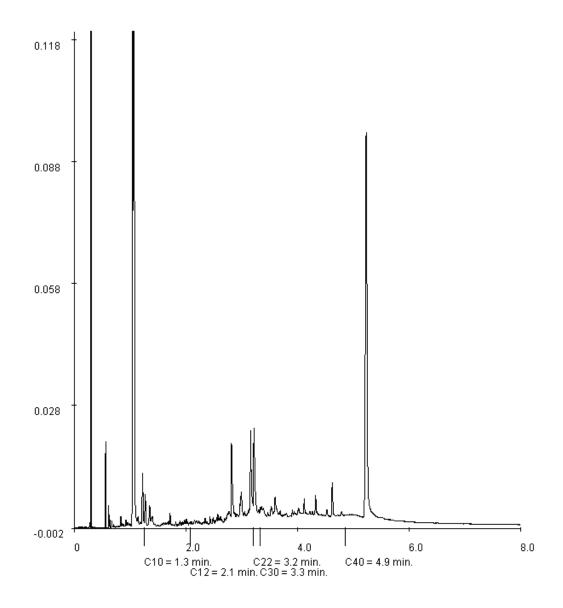
C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 36 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 007 Information relative aux échantillons S7 (0-1)

Détermination de la chaîne de carbone

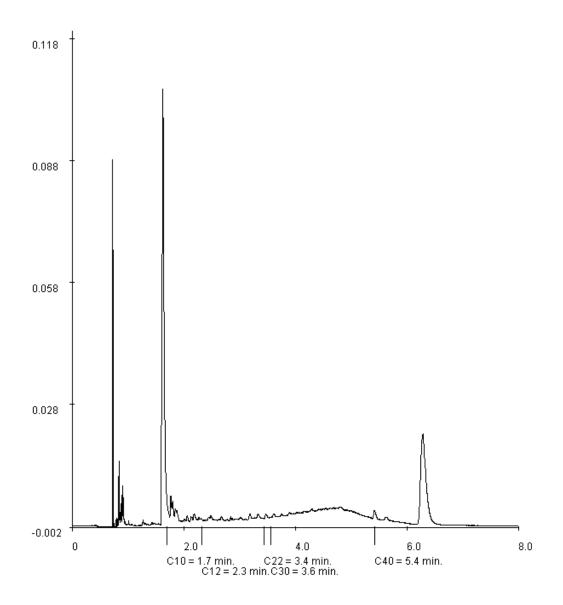
essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

Florent BARBAULT

Rapport d'analyse

Page 37 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 009 Information relative aux échantillons S9 (0-1)

Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

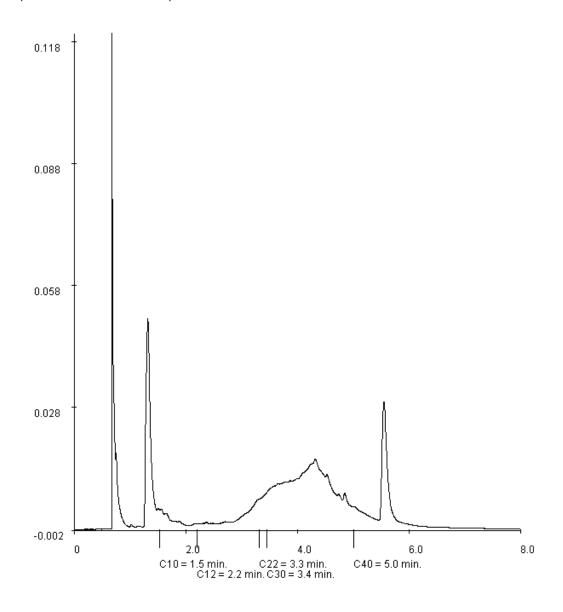
Florent BARBAULT

Rapport d'analyse

Page 38 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011

Référence du projet NIEP110012


Réf. du rapport 11719980 - 1

Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 010 Information relative aux échantillons S10 (0-1)

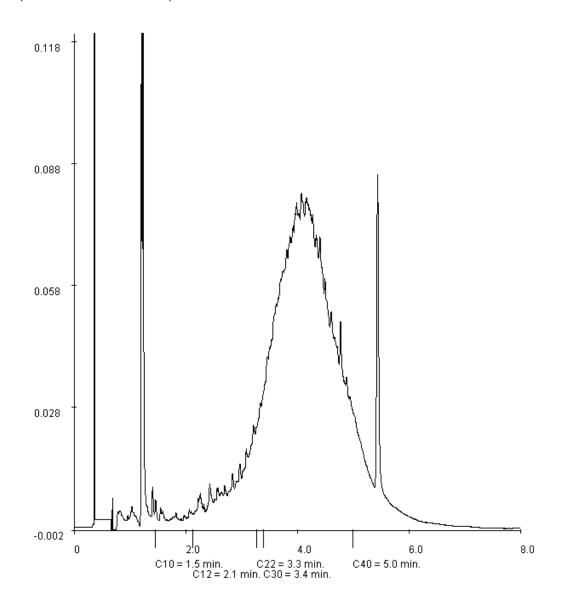
Détermination de la chaîne de carbone

essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

Florent BARBAULT

Rapport d'analyse

Page 39 sur 62


Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 011
Information relative aux échantillons S11 (0-1)

Détermination de la chaîne de carbone

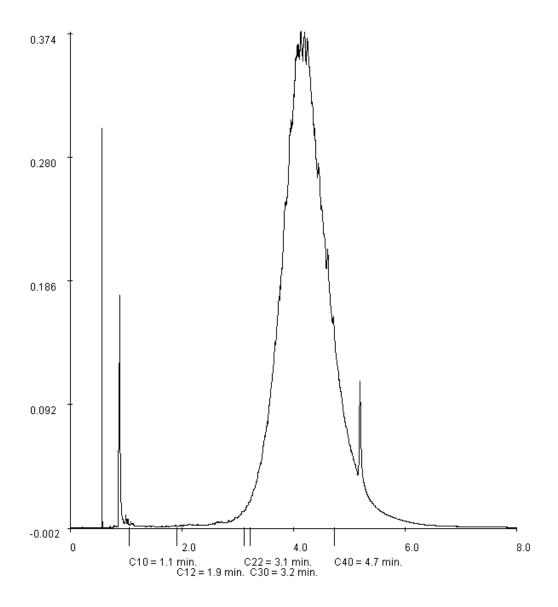
essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 40 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 012 Information relative aux échantillons S12 (0-1)

Détermination de la chaîne de carbone

essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.

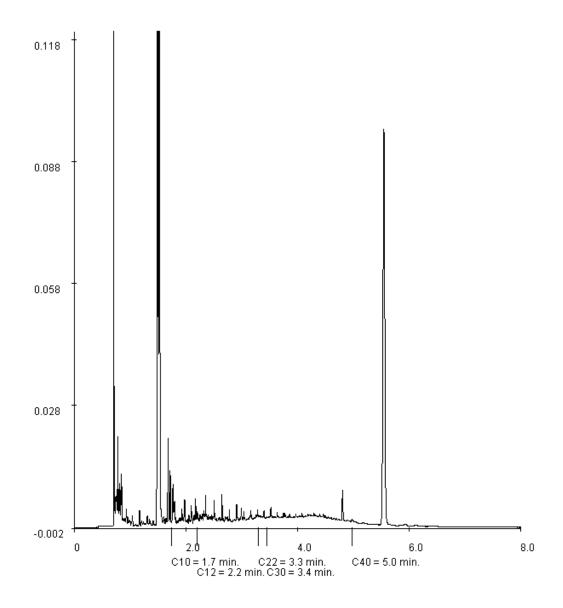
ne : 🔎

Florent BARBAULT

Rapport d'analyse

Page 41 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 013 Information relative aux échantillons S13 (0-1)

Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Florent BARBAULT

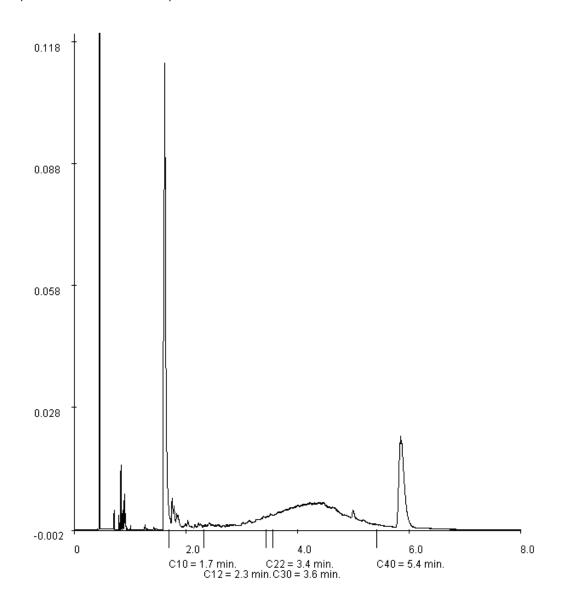
Rapport d'analyse

Page 42 sur 62

SMURFIT /FONDERIE VERNON Projet Date de commande 13-10-2011 Référence du projet NIEP110012

Date de début

14-10-2011


11719980 - 1 Réf. du rapport

09-11-2011 Rapport du

Référence de l'échantillon: 015 Information relative aux échantillons S15 (0-1)

Détermination de la chaîne de carbone

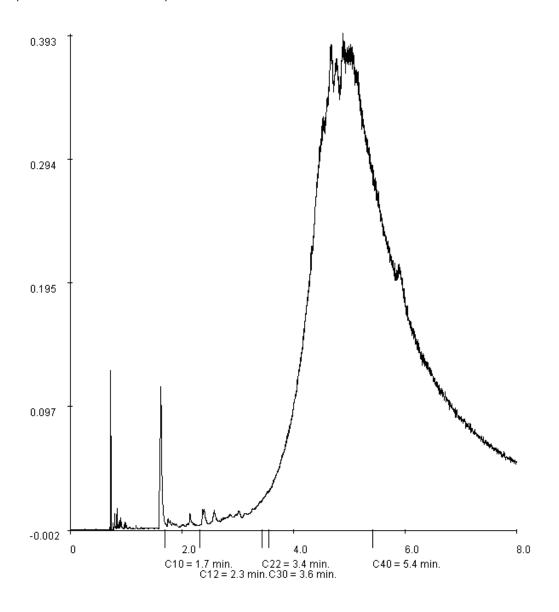
C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 huile de moteur C20-C36 mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 43 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011 Référence du projet NIEP110012 Date de début 14-10-2011


Réf. du rapport 11719980 - 1

Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 021 Information relative aux échantillons (A1+A2)

Détermination de la chaîne de carbone

essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

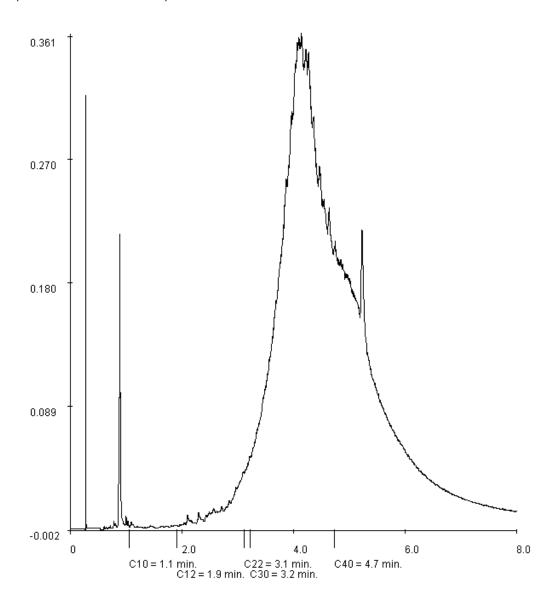
Florent BARBAULT

Réf. du rapport

Rapport d'analyse

Page 44 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011
Référence du projet NIEP110012 Date de début 14-10-2011


 NIEP110012
 Date de début
 14-10-2011

 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 022 Information relative aux échantillons C1

Détermination de la chaîne de carbone

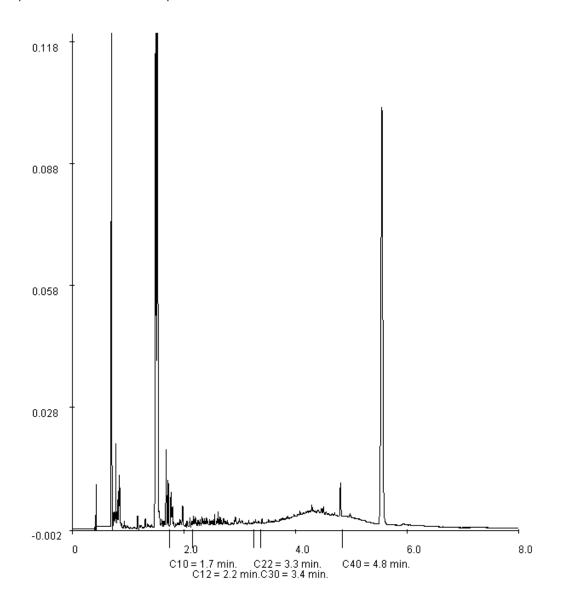
essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

Florent BARBAULT

Rapport d'analyse

Page 45 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 023 Information relative aux échantillons (C3+C5)

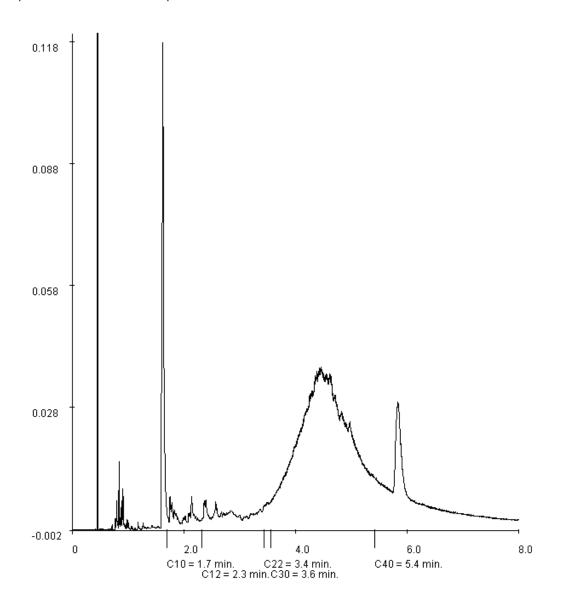
Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 46 sur 62


Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 025 Information relative aux échantillons (D1+D2)

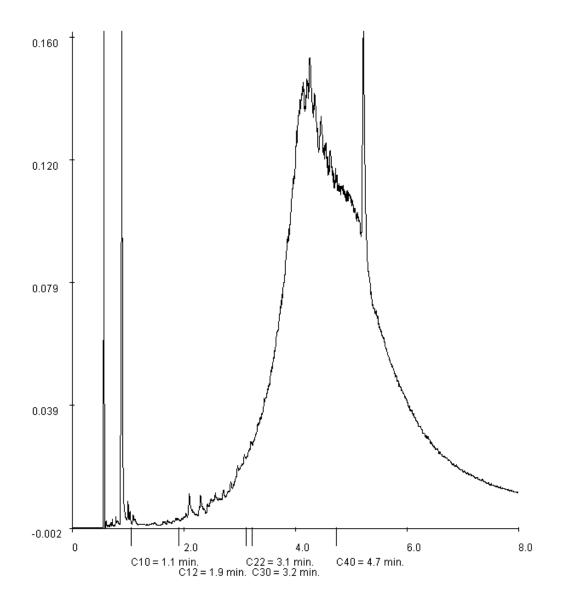
Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 47 sur 62


Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 026
Information relative aux échantillons D4

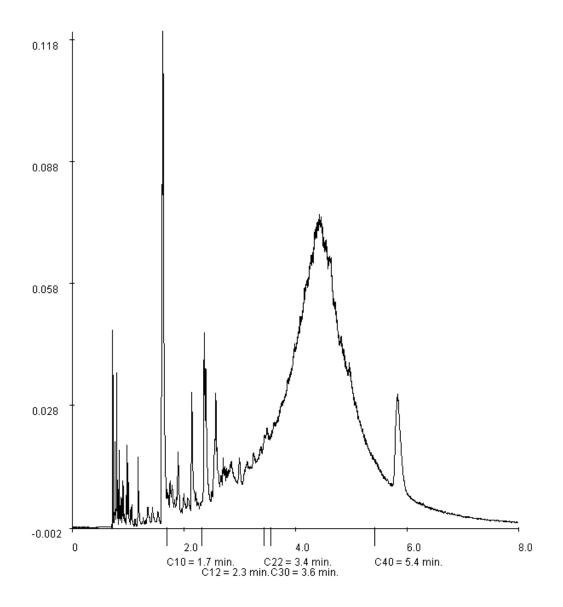
Détermination de la chaîne de carbone

C9-C14
C10-C16
C10-C28
C20-C36
C10-C36

Florent BARBAULT

Rapport d'analyse

Page 48 sur 62


Projet SMURFIT /FONDERIE VERNON

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de commande 13-10-2011
Date de début 14-10-2011
Rapport du 09-11-2011

Référence de l'échantillon: 027
Information relative aux échantillons D5

Détermination de la chaîne de carbone

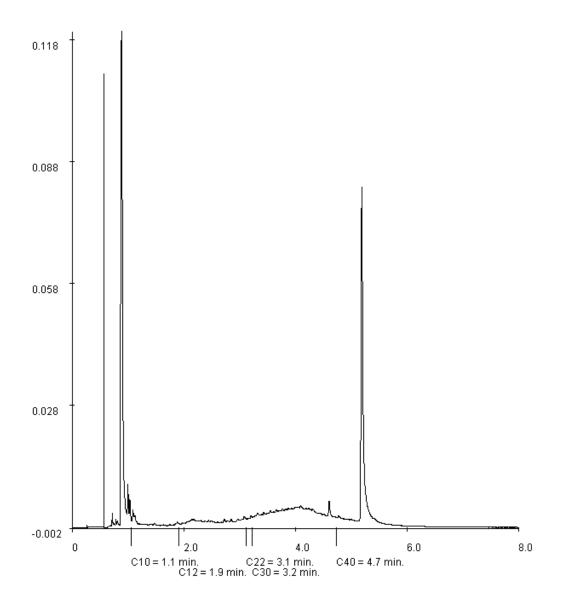
essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 49 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 028 Information relative aux échantillons E1

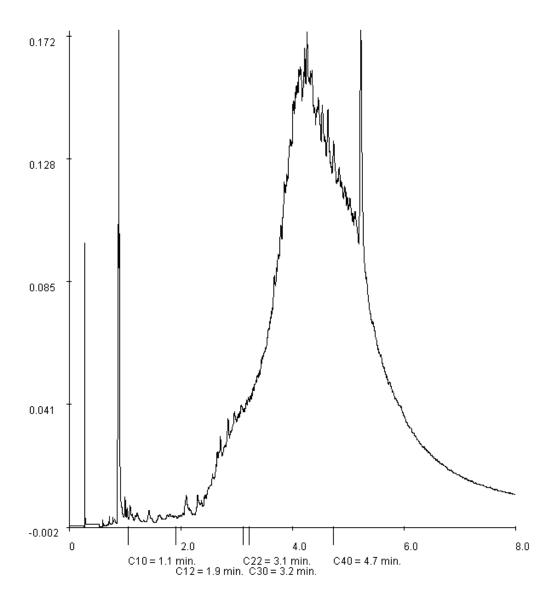
Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Florent BARBAULT

Rapport d'analyse

Page 50 sur 62


Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011

Référence du projet NIEP110012 Réf. du rapport 11719980 - 1 Date de début 14-10-2011 Rapport du 09-11-2011

Référence de l'échantillon: 029 Information relative aux échantillons F1

Détermination de la chaîne de carbone

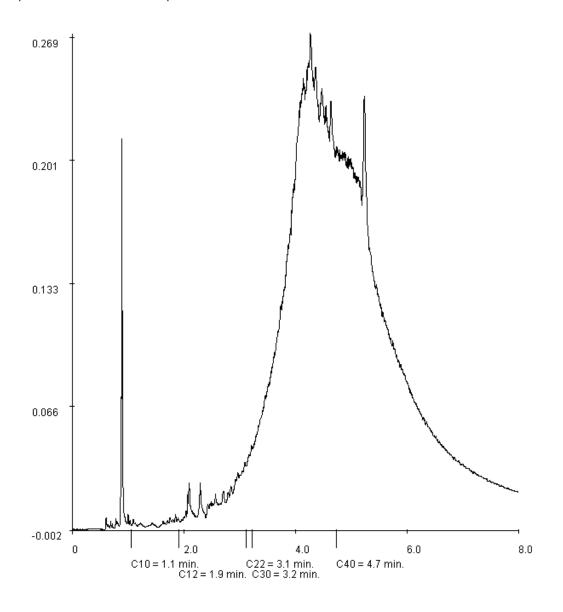
essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

Florent BARBAULT

Rapport d'analyse

Page 51 sur 62

Projet SMURFIT /FONDERIE VERNON Date de commande 13-10-2011


 Référence du projet
 NIEP110012
 Date de début
 14-10-2011

 Réf. du rapport
 11719980 - 1
 Rapport du
 09-11-2011

Référence de l'échantillon: 030 Information relative aux échantillons F2

Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

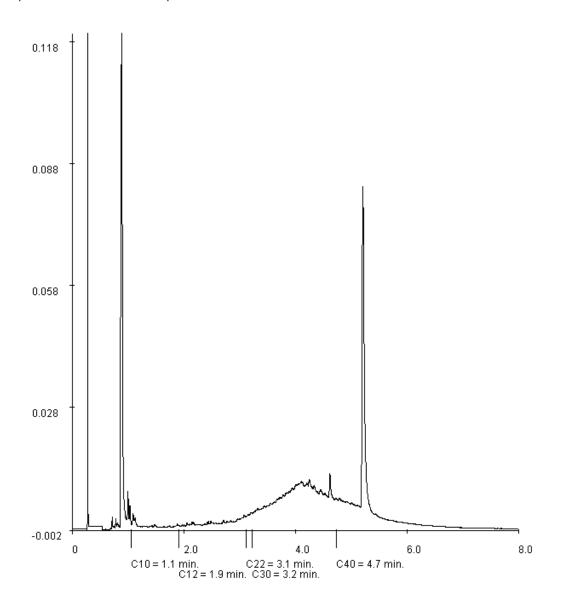
Florent BARBAULT

Rapport d'analyse

Page 52 sur 62

14-10-2011

SMURFIT /FONDERIE VERNON Projet Date de commande 13-10-2011 Référence du projet NIEP110012


Date de début

Réf. du rapport Rapport du 09-11-2011 11719980 - 1

Référence de l'échantillon: 031 Information relative aux échantillons F3

Détermination de la chaîne de carbone

essence	C9-C14
kérosène et pétrole	C10-C16
diesel et gazole	C10-C28
huile de moteur	C20-C36
mazout	C10-C36

Box 1083, 581 10 Linköping, Sweden Tel: + 46 13 254 900 · Fax: + 46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

11719980 - 1

Page 1 (2)

issued by an Accredited Laboratory

ilac-MRA

Report No. 11333414

ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Information about the project Solid

: 11719980 Project number

Information about sample and sampling

Description of sample Arrival date : 2011-10-17 Sampling date : 2011-10-14 Time of Arrival : 1300

Sample name : S1 (0-1) : Ludovic Baron Reference Invoice reference : 11719980

Results of the analyse	es ·			
Test method	Analysis / Investigation of	Results	Unit	Uncert. of measurem
SS-EN 11465	Dry Substance	95.0	%	+ /-10%
SS-EN-1948	2378 TCDD	6.8	ng/kg DS	+ /-30%
SS-EN-1948	12378 PeCDD	11	ng/kg DS	+ /-30%
SS-EN-1948	123478 HxCDD	5.2	ng/kg DS	+ /-35%
SS-EN-1948	123678 HxCDD	< 2	ng/kg DS	+ /-35%
SS-EN-1948	123789 HxCDD	11	ng/kg DS	+ /-35%
SS-EN-1948	1234678 HpCDD	5.6	ng/kg DS	+ /-30%
SS-EN-1948	OCDD .	8.8	ng/kg DS	+ /-30%
SS-EN-1948	2378 TCDF	18	ng/kg DS	+ /-30%
SS-EN-1948	12378 PeCDF	9.3	ng/kg DS	+ /-30%
SS-EN-1948	23478 PeCDF	9.0	ng/kg DS	+ /-30%
SS-EN-1948	123478 HxCDF	12	ng/kg DS	+ /-30%
SS-EN-1948	123678 HxCDF	5.6	ng/kg DS	+ /-30%
SS-EN-1948	123789 HxCDF	< 2	ng/kg DS	+ /-30%
SS-EN-1948	234678 HxCDF	5.3	ng/kg DS	+ /-30%
SS-EN-1948	1234678 HpCDF	12	ng/kg DS	+ /-30%
SS-EN-1948	1234789 HpCDF	< 2	ng/kg DS	+ /-30%
SS-EN-1948	OCDF	13	ng/kg DS	+ /-30%
SS-EN-1948	I-PCDD/F-TEQ Lower Bound	23	ng/kg DS	+ /-35%
SS-EN-1948	I-PCDD/F-TEQ Upper Bound	24	ng/kg DS	+ /-35%
SS-EN-1948	Rec 2378 TCDD Extr spike	41	%	
SS-EN-1948	Rec 12378 PeCDD Extr spike	54	%	
SS-EN-1948	Rec 123478 HxCDD Extr spike	40	%	
SS-EN-1948	Rec 123678 HxCDD Extr spike	70	%	
SS-EN-1948	Rec 1234678 HpCDD Extr spike	66	%	
SS-EN-1948	Rec OCDD Extr spike	28	%	
SS-EN-1948	Rec 2378 TCDF Extr spike	40	%	
SS-EN-1948	Rec 12378 PeCDF Extr spike	38	%	
SS-EN-1948	Rec 23478 PeCDF Extr spike	40	%	

The stated uncertainty of measurement is calculated using a coverage k = 2. In case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit.

(continued)

Box 1083, 581 10 Linköping, Sweden Tel: + 46 13 254 900 · Fax: + 46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

11719980 - 1

Page 2 (2)

issued by an Accredited Laboratory

Report No. 11333414

ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Information about the project

Solid

: 11719980 Project number

Information about sample and sampling

Description of sample : Solid Arrival date : 2011-10-17 Sampling date : 2011-10-14 Time of Arrival : 1300

Sample name : S1 (0-1) : Ludovic Baron Reference Invoice reference : 11719980

Results of the analyse	es			
Test method	Analysis / Investigation of	Results	Unit	Uncert. of measurem.
SS-EN-1948	Rec 123478 HxCDF Extr spike	40	%	
SS-EN-1948	Rec 123678 HxCDF Extr spike	43	%	
SS-EN-1948	Rec 123789 HxCDF Extr spike	40	%	
SS-EN-1948	Rec 234678 HxCDF Extr spike	41	%	
SS-EN-1948	Rec 1234678 HpCDF Extr spike	40	%	
SS-EN-1948	Rec 1234789 HpCDF Extr spike	37	%	
SS-EN-1948	Rec OCDF Extr spike	30	%	

The stated uncertainty of measurement is calculated using a coverage k = 2. In case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit.

Comment

Les résultats rapportés pour dioxines sont indicatifs du fait de faibles recouvrements des standards internes. Ces valeurs de recouvrements ont été prises en compte pour le calculs des résultats.

Linköping 2011-11-07

A copy is sent to ALcontrol Laboratories, Clichy sur Seine

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 · Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

Page 1 (2)

issued by an Accredited Laboratory

Report No. 11333415

Assigr

ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Information about the project

Solid

Project number : 11719980

Information about sample and sampling

Description of sample : Solid Sampling date : 2011-10-14

Sample name : \$2 (0-1)
Reference : Ludovic Baron
Invoice reference : 11719980

Arrival date : 2011-10-17 Time of Arrival : 1300

Results of the analyses Test method Analysis / Investigation of Results Unit Uncert, of measurem SS-EN 11465 Dry Substance 85.9 % +/-10% SS-EN-1948 2378 TCDD 4.8 ng/kg DS +/-30% SS-EN-1948 ng/kg DS 12378 PeCDD < 2 +/-30% SS-EN-1948 123478 HxCDD ng/kg DS < 2 +/-35% SS-EN-1948 123678 HxCDD 8.4 ng/kg DS +/-35% ng/kg DS SS-FN-1948 123789 HxCDD 10 +/-35% SS-EN-1948 1234678 HpCDD 57 ng/kg DS +/-30% SS-EN-1948 OCDD 420 ng/kg DS +/-30% SS-EN-1948 2378 TCDF ng/kg DS < 2 +/-30% SS-EN-1948 12378 PeCDF < 2 ng/kg DS +1-30% SS-EN-1948 23478 PeCDF < 2 ng/kg DS +/-30% SS-EN-1948 123478 HxCDF ng/kg DS 10 +/-30% SS-FN-1948 ng/kg DS 123678 HxCDF < 2 +/-30% SS-EN-1948 123789 HxCDF < 2 ng/kg DS +/-30% SS-EN-1948 234678 HxCDF < 2 ng/kg DS +/-30% SS-EN-1948 1234678 HpCDF 51 ng/kg DS +/-30% SS-EN-1948 1234789 HpCDF 24 ng/kg D\$ +/-30% SS-EN-1948 OCDF 170 ng/kg DS +1-30% SS-EN-1948 I-PCDD/F-TEQ Lower Bound 9.6 ng/kg DS +/-35% SS-EN-1948 I-PCDD/F-TEQ Upper Bound 13 ng/kg DS +/-35% SS-EN-1948 Rec 2378 TCDD Extr spike 71 % % SS-EN-1948 Rec 12378 PeCDD Extr spike 79 % SS-FN-1948 Rec 123478 HxCDD Extr spike 60 SS-EN-1948 Rec 123678 HxCDD Extr spike 56 % SS-EN-1948 Rec 1234678 HpCDD Extr spike 92 % SS-EN-1948 Rec OCDD Extr spike 61 % SS-EN-1948 Rec 2378 TCDF Extr spike 87 % SS-EN-1948 Rec 12378 PeCDF Extr spike 77 % SS-EN-1948 Rec 23478 PeCDF Extr spike

The stated uncertainty of measurement is celculated using a coverage k = 2, in case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit

(continued)

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 · Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

11719980 - 1

Page 2 (2)

issued by an Accredited Laboratory

Solid

Arrival date

Time of Arrival

Report No. 11333415

Assigner **ALcontrol Laboratories** Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

: 2011-10-17

: 1300

Applies to

Information about the project

Project number : 11719980

Information about sample and sampling

Description of sample : Solid : 2011-10-14 Sampling date

: S2 (0-1) Sample name : Ludovic Baron Reference Invoice reference : 11719980

Results of the analys	es			
Test method	Analysis / Investigation of	Results	Unit	Uncert, of measurem,
SS-EN-1948	Rec 123478 HxCDF Extr spike	68	%	
SS-EN-1948	Rec 123678 HxCDF Extr spike	71	%	
SS-EN-1948	Rec 123789 HxCDF Extr spike	70	%	
SS-EN-1948	Rec 234678 HxCDF Extr spike	70	%	
SS-EN-1948	Rec 1234678 HpCDF Extr spike	66	%	
SS-EN-1948	Rec 1234789 HpCDF Extr spike	68	%	
SS-EN-1948	Rec OCDF Extr spike	60	%	

The stated uncertainty of measurement is calculated using a coverage k = 2, in case interval is set the higher figure rafers to measurement uncertainty for results close to the reporting limit.

Linköping 2011-10-28 The report has been reviewed and approved by A copy is sent to ALcontrol Laboratories, Clichy sur Seine

Therese Tellman Responsible reviewer Control numbers 8487 8162 6164 6353

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 · Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

Solid

REPORT

Page 1 (2)

issued by an Accredited Laboratory

Report No. 11333419

. Δesign

> ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Information about the project

Project number : 11719980

Information about sample and sampling

Description of sample : Solid Sampling date : 2011-10-14

Sample name : S7 (0-1)
Reference : Ludovic Baron
Invoice reference : 11719980


Arrival date : 2011-10-17 Time of Arrival : 1300

Results of the analyses Test method Analysis / Investigation of Results Unit Uncert, of measurem. SS-EN 11465 Dry Substance 83.5 % +/-10% SS-EN-1948 2378 TCDD < 2 ng/kg DS +/-30% SS-EN-1948 12378 PeCDD <2 ng/kg DS +/-30% SS-EN-1948 123478 HxCDD ng/kg DS < 2 +/-35% SS-EN-1948 123678 HxCDD ng/kg DS < 2 +/-35% SS-EN-1948 ng/kg DS 123789 HxCDD < 2 +/-35% SS-FN-1948 1234678 HpCDD <2 ng/kg DS +/-30% SS-FN-1948 OCDD 7.2 ng/kg DS +/-30% SS-EN-1948 2378 TCDF < 2 ng/kg DS +/-30% SS-EN-1948 12378 PeCDF < 2 ng/kg DS +/-30% SS-EN-1948 23478 PeCDF < 2 ng/kg DS +7-30% SS-EN-1948 123478 HxCDF <2 ng/kg DS +/-30% SS-EN-1948 123678 HxCDF ng/kg DS < 2 +7.30% SS-EN-1948 123789 HxCDF < 2 ng/kg DS +/-30% SS-EN-1948 234678 HxCDF < 2 ng/kg DS +/-30% SS-EN-1948 1234678 HpCDF < 2 ng/kg DS +/-30% SS-EN-1948 1234789 HpCDF <2 ng/kg DS +/-30% SS-EN-1948 OCDF 5.1 ng/kg DS +/-30% SS-EN-1948 I-PCDD/F-TEQ Lower Bound < 2 ng/kg DS +/-35% SS-EN-1948 I-PCDD/F-TEQ Upper Bound 5.8 ng/kg DS +1.35% Rec 2378 TCDD Extr spike SS-EN-1948 56 % SS-EN-1948 Rec 12378 PeCDD Extr spike % 67 SS-EN-1948 % Rec 123478 HxCDD Extr spike 74 SS-EN-1948 Rec 123678 HxCDD Extr spike 65 % % SS-EN-1948 Rec 1234678 HpCDD Extr spike 87 SS-EN-1948 Rec OCDD Extr spike 50 % SS-EN-1948 Rec 2378 TCDF Extr spike 70 % SS-EN-1948 Rec 12378 PeCDF Extr spike 61 SS-EN-1948 Rec 23478 PeCDF Extr spike 64

The stated uncertainty of measurement is calculated using a coverage k = 2. In case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit.

(continued)

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 · Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

11719980 - 1

Page 2 (2)

issued by an Accredited Laboratory

Report No. 11333419

Assigner

ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Information about the project

: 11719980 Project number

Solid

Information about sample and sampling

Description of sample

Sampling date : 2011-10-14 Sample name S7 (0-1)

Reference : Ludovic Baron Invoice reference : 11719980

Arrival date : 2011-10-17 Time of Arrival

: 1300

Results of the analyse	es			
Test method	Analysis / Investigation of	Results	Unit	Uncert, of measurem.
SS-EN-1948	Rec 123478 HxCDF Extr spike	61	%	
SS-EN-1948	Rec 123678 HxCDF Extr spike	57	%	
SS-EN-1948	Rec 123789 HxCDF Extr spike	59	%	
SS-EN-1948	Rec 234678 HxCDF Extr spike	59	%	
SS-EN-1948	Rec 1234678 HpCDF Extr spike	57	%	
SS-EN-1948	Rec 1234789 HpCDF Extr spike	58	%	
SS-EN-1948	Rec OCDF Extr spike	55	%	

The stated uncertainty of measurement is calculated using a coverage k = 2. In case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit.

Linköping 2011-10-28 The report has been reviewed and approved by A copy is sent to ALcontrol Laboratories, Clichy sur Seine

Therese Tellman Responsible reviewer Control numbers 8080 8968 6161 6455

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 · Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

Page 1 (2)

issued by an Accredited Laboratory

Report No. 11333417

Assigner

ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

: 2011-10-17

: 1300

Applies to

Information about the project

Solid

Arrival date

Time of Arrival

: 11719980 Project number

Results of the analyses

Test method

SS-EN 11465

SS-EN-1948

Information about sample and sampling

Description of sample Sampling date 2011-10-14

Sample name S5 (0-1) Reference Ludovic Baron Invoice reference 11719980

> Results Unit Uncert, of measurem 86.8 % +/-10% ng/kg DS < 2 +/-30% <2 ng/kg DS +/-30%

SS-EN-1948	2378 ICDD	< 2	ng/kg DS	+/-30%
SS-EN-1948	12378 PeCDD	< 2	ng/kg DS	+/-30%
SS-EN-1948	123478 HxCDD	< 2	ng/kg DS	+/-35%
SS-EN-1948	123678 HxCDD	< 2	ng/kg DS	+/-35%
SS-EN-1948	123789 HxCDD	2.8	ng/kg DS	+/-35%
SS-EN-1948	1234678 HpCDD	11	ng/kg DS	+/-30%
SS-EN-1948	OCDD	110	ng/kg DS	+/-30%
SS-EN-1948	2378 TCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	12378 PeCDF	6.0	ng/kg DS	+/-30%
SS-EN-1948	23478 PeCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	123478 HxCDF	2.8	ng/kg DS	+/-30%
SS-EN-1948	123678 HxCDF	2.6	ng/kg DS	+/-30%
SS-EN-1948	123789 HxCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	234678 HxCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	1234678 HpCDF	9.6	ng/kg DS	+ 1-30%
SS-EN-1948	1234789 HpCDF	3.3	ng/kg DS	+/-30%
SS-EN-1948	OCDF	19	ng/kg DS	+/-30%
SS-EN-1948	I-PCDD/F-TEQ Lower Bound	< 2	ng/kg DS	+/-35%
SS-EN-1948	I-PCDD/F-TEQ Upper Bound	6.5	ng/kg DS	+/-35%
SS-EN-1948	Rec 2378 TCDD Extr spike	66	%	
SS-EN-1948	Rec 12378 PeCDD Extr spike	76	%	
SS-EN-1948	Rec 123478 HxCDD Extr spike	77	%	
SS-EN-1948	Rec 123678 HxCDD Extr spike	99	%	
SS-EN-1948	Rec 1234678 HpCDD Extr spike	99	%	
SS-EN-1948	Rec OCDD Extr spike	62	%	
SS-EN-1948	Rec 2378 TCDF Extr spike	78	%	
SS-EN-1948	Rec 12378 PeCDF Extr spike	73	%	
SS-EN-1948	Rec 23478 PeCDF Extr spike	73	%	

Analysis / Investigation of

Dry Substance

2378 TCDD

The stated uncertainty of measurement is calculated using a coverage k = 2, in case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit

ALcontrol Laboratories

ALcontrol AB

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 · Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

Page 2 (2)

issued by an Accredited Laboratory

Report No. 11333417

Assigner

ALcontrol Laboratories Clichy sur Seine

11719980 - 1

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Information about the project

Project number : 11719980

Solid

Information about sample and sampling

Description of sample : Solid Sampling date : 2011-10-14

Sample name : S5 (0-1)
Reference : Ludovic Baron
Invoice reference : 11719980

Arrival date : 2011-10-17 Time of Arrival : 1300

Results of the analyse	<i>es</i>			
Test method	Analysis / Investigation of	Results	Unit	Uncert, of measurem.
SS-EN-1948	Rec 123478 HxCDF Extr spike	72	%	
SS-EN-1948	Rec 123678 HxCDF Extr spike	70	%	
SS-EN-1948	Rec 123789 HxCDF Extr spike	75	%	
SS-EN-1948	Rec 234678 HxCDF Extr spike	70	%	
SS-EN-1948	Rec 1234678 HpCDF Extr spike	70	%	
SS-EN-1948	Rec 1234789 HpCDF Extr spike	73	%	
SS-EN-1948	Rec OCDF Extr spike	62	%	

The stated uncertainty of measurement is calculated using a coverage k = 2, in case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit.

Linköping 2011-10-28
The report has been reviewed and approved by

A copy is sent to ALcontrol Laboratories, Clichy sur Seine

Therese Tellman Responsible reviewer Control numbers 8280 8463 6163 6655

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

Page 1 (2)

issued by an Accredited Laboratory

Report No. 11333421

Assigner

ALcontrol Laboratories Clichy sur Seine

5 rue Madame de Sanzillon 92110 Clicy sur Seine

Applies to

Invoice reference

Information about the project

Solid

: 11719980 Project number

Information about sample and sampling

Description of sample Sampling date 2011-10-14

Sample name S11 (0·1) Reference Ludovic Baron

11719980

Arrival date Time of Arrival

: 2011-10-17

: 1300

Results of the analyses				
Test method	Analysis / Investigation of	Results	Unit	Uncert, of measurem.
SS-EN 11465	Dry Substance	94.4	%	+/-10%
SS-EN-1948	2378 TCDD	< 2	ng/kg DS	+/-30%
SS-EN-1948	12378 PeCDD	< 2	ng/kg DS	+/-30%
SS-EN-1948	123478 HxCDD	< 2	ng/kg DS	+/-35%
SS-EN-1948	123678 HxCDD	< 2	ng/kg DS	+/-35%
SS-EN-1948	123789 HxCDD	3.4	ng/kg DS	+/-35%
SS-EN-1948	1234678 HpCDD	31	ng/kg DS	+/-30%
SS-EN-1948	OCDD	240	ng/kg DS	+/-30%
SS-EN-1948	2378 TCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	12378 PeCDF	<2	ng/kg DS	+/-30%
SS-EN-1948	23478 PeCDF	< 2	ng/kg DS	+1.30%
SS-EN-1948	123478 HxCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	123678 HxCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	123789 HxCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	234678 HxCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	1234678 HpCDF	4.3	ng/kg DS	+/-30%
SS-EN-1948	1234789 HpCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	OCDF	< 2	ng/kg DS	+/-30%
SS-EN-1948	I-PCDD/F-TEQ Lower Bound	< 2	ng/kg DS	+/-35%
SS-EN-1948	I-PCDD/F-TEQ Upper Bound	6.5	ng/kg DS	+1.35%
SS-EN-1948	Rec 2378 TCDD Extr spike	68	%	
SS-EN-1948	Rec 12378 PeCDD Extr spike	76	%	
SS-EN-1948	Rec 123478 HxCDD Extr spike	70	%	
SS-EN-1948	Rec 123678 HxCDD Extr spike	88	%	
SS-EN-1948	Rec 1234678 HpCDD Extr spike	92	%	
SS-EN-1948	Rec OCDD Extr spike	61	%	
SS-EN-1948	Rec 2378 TCDF Extr spike	80	%	
SS-EN-1948	Rec 12378 PeCDF Extr spike	80	%	
SS-EN-1948	Rec 23478 PeCDF Extr spike	77	%	

The stated uncertainty of measurement is calculated using a coverage k = 2, in case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit

(continued)

Box 1083, 581 10 Linköping, Sweden Tel: +46 13 254 900 - Fax: +46 13 121 728 Registered 556152-0916 Registered office: Linköping, Sweden

REPORT

Page 2 (2)

issued by an Accredited Laboratory

Report No. 11333421

Assigner

ALcontrol Laboratories Clichy sur Seine

11719980 - 1

5 rue Madame de Sanzillon 92110 Clicy sur Seine

: 2011-10-17

: 1300

Applies to

Project number

Information about the project

: 11719980

Solid

Arrival date

Time of Arrival

Information about sample and sampling

Description of sample : Solid

 Sampling date
 : 2011-10-14

 Sample name
 : S11 (0-1)

Sample name : \$11 (0-1)
Reference : Ludovic Baron
Invoice reference : 11719980

Results of the analys	res			
Test method	Analysis / Investigation of	Results	Unit	Uncert, of measuren
SS-EN-1948	Rec 123478 HxCDF Extr spike	63	%	
SS-EN-1948	Rec 123678 HxCDF Extr spike	71	%	
SS-EN-1948	Rec 123789 HxCDF Extr spike	72	%	
SS-EN-1948	Rec 234678 HxCDF Extr spike	67	%	
SS-EN-1948	Rec 1234678 HpCDF Extr spike	66	%	
SS-EN-1948	Rec 1234789 HpCDF Extr spike	74	%	
SS-EN-1948	Rec OCDF Extr spike	63	%	

The stated uncertainty of measurement is calculated using a coverage k = 2. In case interval is set the higher figure refers to measurement uncertainty for results close to the reporting limit.

Linköping 2011-10-28
The report has been reviewed and approved by

Therese Tellman Responsible reviewer Control numbers 7880 8069 1663 6959 A copy is sent to
ALcontrol Laboratories, Clichy sur Seine

ALcontrol Laboratories France

5 rue Madame de Sanzillon \cdot 92110 Clichy-sur-Seine Tel.: +33 (0)155 90 52 50 \cdot Fax: +33 (0)155 90 52 51 www.alcontrol.fr

Rapport d'analyse

ANTEA GROUP (Agence Paris Centre Normandie) Céline RAZE Implantation de Caen - Innovaparc - BâtA 2 Rue Jean Perrin - CS26 F-14461 COLOMBELLES CEDEX

Page 1 sur 3

Votre nom de Projet : SMURFIT_VERNON_analyses_compléméntaires

Votre référence de Projet : NIEP110012

Référence du rapport ALcontrol : 11732546, version: 1

Rotterdam, 07-12-2011

Cher(e) Madame/ Monsieur,

Veuillez trouver ci-joint les résultats des analyses effectuées en laboratoire pour votre projet NIEP110012. Le rapport reprend les descriptions des échantillons, le nom de projet et les analyses que vous avez indiqués sur le bon de commande. Les résultats rapportés se réfèrent uniquement aux échantillons analysés.

Ce rapport est constitué de 3 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses, à l'exception des analyses sous-traitées, sont réalisées par ALcontrol Laboratoires, Steenhouwerstraat 15, Rotterdam, Pays Bas.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.

Laboratory Manager

Céline RAZE

Rapport d'analyse

Page 2 sur 3

Projet SMURFIT_VERNON_analyses_compléméntaires

Date de début 22-11-2011

Référence du projet NIEP110012 Réf. du rapport 11732546 - 1

Rapport du 07-12-2011

Date de commande 22-11-2011

Analyse	Unité	Q	001	002	003
RECHERCHE D'AMIANT	E				
échantillon livré	kg	Q	0.50	0.50	0.50
RECHERCHE QUALITA	TIVE D'AMIANT	E			
quantité d'échantillon analysée	kg		0.50	0.50	0.50
chrysotile	-	Q	non détecté	non détecté	non détecté
amosyte	-	Q	non détecté	non détecté	non détecté
crocidolyte	-	Q	non détecté	non détecté	non détecté
anthophyllyte	-	Q	non détecté	non détecté	non détecté
trémolyte	-	Q	non détecté	non détecté	non détecté
actinolyte	-	Q	non détecté	non détecté	non détecté
AMIANTE DANS L ECHA	ANTILLON				
degré de liaison	-		non applicable	non applicable	non applicable

Les analyses notées Q sont accréditées par le RvA.

Code	Matrice	Réf. échantillon
001	Amiante suspectée	A1+A2 (ech.21)
002	Amiante suspectée	D1+D2 (ech.25)
003	Amiante suspectée	D5 (ech27)

Céline RAZE

003

K1119641

14-10-2011

Rapport d'analyse

Page 3 sur 3

Projet SMURFIT_VERNON_analyses_compléméntaires Date de commande 22-11-2011 Référence du projet NIEP110012 Date de début 22-11-2011

11732546 - 1 Réf. du rapport Rapport du 07-12-2011

Analyse		Matrice		Référence normative							
ohn vootilo		Amiento queno etéc		NEN 5896							
chrysotile		Amiante suspectée									
amosyte		Amiante suspectée		Idem							
crocidolyte	е	Amiante suspectée)	Idem							
anthophyllyte Amiante suspectée											
trémolyte		Amiante suspectée	9	Idem							
actinolyte		Amiante suspectée)	Idem							
degré de l	iaison	Amiante suspectée	•	Idem							
Code	Code barres	Date de réception	Date prelèvement	Flaconna	ge						
001	K1119618	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique						
001	K1119657	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique						
002	K1119588	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique						
002	K1119589	14-10-2011	14-10-2011	ALC292	Date de prélèvement théorique						

ALC292

Date de prélèvement théorique

14-10-2011

 Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Annexe 10

Tableau de synthèse des résultats d'analyses

(4 pages)

Résultats analyses de sols

Date du rapport	09-11-2011																
Analyse	Unité	seuils ISDI	11719980-001	11719980-002	11719980-003	11719980-004	11719980-005	11719980-006	11719980-007	11719980-008	11719980-009	11719980-010	11719980-011	11719980-012	11719980-013	11719980-014	11719980-015
		-	S1 (0-1)	S2 (0-1)	S3 (0-1)	S4 (0-1)	S5 (0-1)	S6 (0-1)	S7 (0-1)	S8 (0-1)	S9 (0-1)	S10 (0-1)	S11 (0-1)	S12 (0-1)	S13 (0-1)	S14 (0-1)	S15 (0-1)
matière sèche	% massique		94.1	85.1	88.5	89.1	87.0	87.2	86.8	86.6	90.2	85.9	95.3	91.2	94.0	80.0	89.9
METAUX																	
arsenic	mg/kg MS		5.4	5.3	5.3	6.1	8.1	4.1	7.0	14	7.4	390	5.0	<4	8.3	<4	23
cadmium	mg/kg MS		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	3.3	<0.4	1.6	<0.4	<0.4	<0.4	<0.4	<0.4
chrome	mg/kg MS		<15	15	16	<15	22	<15	18	22	<15	19	<15	<15	26	17	45
cuivre	mg/kg MS		23	22	7.2	120	110	<5	15	2200	120	1600	30	160	43	5.4	350
mercure	mg/kg MS		<0.05	<0.05	<0.05	0.06	0.10	<0.05	0.13	<0.05	<0.05	0.36	<0.05	<0.05	<0.05	<0.05	0.07
plomb	mg/kg MS		<13	14	<13	15	51	<13	54	22	21	8700	19	<13	<13	<13	51
nickel	mg/kg MS		9.3	9.6	9.9	14	15	7.9	11	140	11	61	19	<3	21	9.9	39
zinc	mg/kg MS		<20	32	26	55	97	<20	87	270	31	640	39	<20	<20	40	170
COMPOSES AROMATIQUES VOLATILS																	
benzène	mg/kg MS		<0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
toluène	mg/kg MS		<0.05	<0.05	<0.05	0.14	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	0.07	<0.05	<0.05
éthylbenzène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
orthoxylène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
para- et métaxylène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
xylènes	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BTEX total	mg/kg MS	6	<0.2	<0.2	<0.2	0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
HYDROCARBURES AROMATIQUES POLYCYCLIQUES																	
naphtalène	mg/kg MS		#	<0.02	<0.02	0.03	0.05	<0.02	0.03	<0.02	0.22	0.04	0.41	0.03	0.15	<0.02	0.10
acénaphtylène	mg/kg MS		#	<0.02	<0.02	<0.02	0.09	<0.02	0.65	<0.02	<0.02	0.03	0.02	<0.02	<0.02	<0.02	0.03
acénaphtène	mg/kg MS		#	<0.02	<0.02	<0.02	0.08	<0.02	0.14	<0.02	0.03	<0.02	0.04	<0.02	<0.02	<0.02	<0.02
fluorène	mg/kg MS		#	<0.02	<0.02	<0.02	0.16	<0.02	0.25	<0.02	0.03	<0.02	0.03	<0.02	<0.02	<0.02	0.02
phénanthrène	mg/kg MS		#	<0.02	<0.02	0.06	1.5	<0.02	3.6	0.04	0.44	0.39	0.53	0.07	0.26	<0.02	0.46
anthracène	mg/kg MS		#	<0.02	<0.02	<0.02	0.37	<0.02	0.89	<0.02	0.06	0.09	0.04	<0.02	0.03	<0.02	0.06
fluoranthène	mg/kg MS		#	<0.02	<0.02	0.10	2.3	<0.02	7.9	0.12	0.47	0.88	0.20	0.05	0.06	<0.02	0.56
pyrène	mg/kg MS		#	<0.02	<0.02	0.18	2.0	<0.02	6.1	0.10	0.32	0.79	0.17	0.03	0.06	<0.02	0.37
benzo(a)anthracène	mg/kg MS		#	<0.02	<0.02	0.11	1.2	<0.02	3.9	0.10	0.19	0.45	0.07	0.03	0.06	<0.02	0.37
chrysène	mg/kg MS		#	<0.02	<0.02	0.09	0.95	<0.02	3.2	0.07	0.15	0.42	0.08	0.04	0.05	<0.02	0.47
benzo(b)fluoranthène	mg/kg MS		#	<0.02	<0.02	0.16	1.7	<0.02	4.9	0.17	0.20	0.87	0.10	0.03	0.06	<0.02	0.64
benzo(k)fluoranthène	mg/kg MS		#	<0.02	<0.02	0.07	0.72	<0.02	2.1	0.07	0.09	0.38	0.04	<0.02	0.02	<0.02	0.28
benzo(a)pyrène	mg/kg MS		#	<0.02	<0.02	0.07	1.4	<0.02	3.8	0.10	0.10	0.62	0.05	<0.02	0.02	<0.02	0.27
dibenzo(ah)anthracène	mg/kg MS		#	<0.02	<0.02	<0.02	0.21	<0.02	0.60	<0.02	<0.02	0.12	<0.02	<0.02	<0.02	<0.02	0.16
benzo(ghi)pérylène	mg/kg MS		#	<0.02	<0.02	0.08	1.0	<0.02	2.7	0.10	0.06	0.64	0.07	<0.02	0.02	<0.02	0.29
indéno(1,2,3-cd)pyrène	mg/kg MS		#	<0.02	<0.02	0.08	1.0	<0.02	2.7	0.10	0.05	0.57	0.04	<0.02	<0.02	<0.02	0.25
HAP totaux (10) VROM	mg/kg MS		#	<0.2	<0.2	0.70	11	<0.2	31	0.73	1.8	4.5	1.5	0.27	0.70	<0.2	3.1
HAP totaux (16) - EPA	mg/kg MS	50	#	<0.32	<0.32	1.1	15	<0.32	43	1.0	2.4	6.3	1.9	0.35	0.86	<0.32	4.4
COMPOSES ORGANO HALOGENES VOLATILS																	
1,2-dichloroéthane	mg/kg MS		<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,1-dichloroéthène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
cis-1,2-dichloroéthène	mg/kg MS		<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
trans 1,2-dichloroéthylène	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
dichlorométhane	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

		-	S1 (0-1)	S2 (0-1)	S3 (0-1)	S4 (0-1)	S5 (0-1)	S6 (0-1)	S7 (0-1)	S8 (0-1)	S9 (0-1)	S10 (0-1)	S11 (0-1)	S12 (0-1)	S13 (0-1)	S14 (0-1)	S15 (0-1)
1,2-dichloropropane	mg/kg MS		<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,3-dichloropropène	mg/kg MS		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tétrachloroéthylène	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02
tétrachlorométhane	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,1,1-trichloroéthane	mg/kg MS		0.06	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.19	<0.03	<0.03
trichloroéthylène	mg/kg MS		0.19	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
chloroforme	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
chlorure de vinyle	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
hexachlorobutadiène	mg/kg MS		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
bromoforme	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HYDROCARBURES TOTAUX																	
fraction C10-C12	mg/kg MS		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
fraction C12-C16	mg/kg MS		<5	<5	<5	<5	17	<5	<5	<5	<5	<5	11	<5	<5	<5	<5
fraction C16 - C21	mg/kg MS		<5	<5	<5	49	28	<5	13	<5	<5	10	39	16	<5	<5	7.8
fraction C21 - C40	mg/kg MS		<5	<5	<5	1700	33	<5	20	<5	24	71	350	1400	9.9	<5	40
hydrocarbures totaux C10-C40	mg/kg MS	500	<20	<20	<20	1800	80	<20	35	<20	25	80	400	1400	<20	<20	50

Résultats analyses ISDI sur Eluat

Date du rapport	09-11-2011

Date du rapport	09-11-2011												
Analyse	Unité	seuils ISDI	11719980-032	11719980-033	11719980-034	11719980-035	11719980-036	11719980-042	11719980-037	11719980-038	11719980-039	11719980-040	11719980-041
		-	Eluat (A1+A2)	Eluat C1	Eluat (C3+C5)	Eluat C4	Eluat (D1+D2)	Eluat D4	Eluat D5	Eluat E1	Eluat F1	Eluat F2	Eluat F3
СОТ	mg/kg MS	500	160	74	<50	<50	<50	<50	<50	140	<50	<50	<50
conductivité ap. lix.	μS/cm		2350	284	895	3280	1444	98	228	707	97.5	450	225
pH final ap. lix.	-		7.86	10.34	8.08	12.35	7.62	8.63	8.87	9.38	8.47	11.11	8.66
température pour mes. pH	°C		19.8	19.7	19.2	19.8	19.7	19.8	19.8	19.1	19.9	20	19.8
LIXIVIATION													
L/S	ml/g		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
METAUX													
antimoine	mg/kg MS	0.06	<0.039	<0.039	<0.039	<0.039	<0.039	<0.039	<0.039	0.054	<0.039	<0.039	<0.039
arsenic	mg/kg MS	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.29	<0.1	<0.1	<0.1
baryum	mg/kg MS	20	0.56	0.12	0.41	5.8	0.37	<0.1	0.13	<0.1	<0.1	0.30	0.16
cadmium	mg/kg MS	0.04	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
chrome	mg/kg MS	0.5	<0.1	0.20	<0.1	0.46	<0.1	<0.1	<0.1	<0.1	<0.1	0.20	<0.1
cuivre	mg/kg MS	2	0.23	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.20	<0.1	<0.1	<0.1
mercure	mg/kg MS	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
plomb	mg/kg MS	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	<0.1
molybdène	mg/kg MS	0.5	1.7	0.31	<0.10	0.12	2.1	<0.10	0.22	1.4	<0.10	0.12	0.24
nickel	mg/kg MS	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
sélénium	mg/kg MS	0.1	<0.039	<0.039	0.09	<0.039	<0.039	<0.039	<0.039	0.11	<0.039	<0.039	<0.039
zinc	mg/kg MS	4	1.4	<0.2	<0.2	<0.2	0.62	<0.2	<0.2	0.30	<0.2	<0.2	<0.2
COMPOSES INORGANIQUES													
fraction soluble	mg/kg MS	4000	24600	2120	7500	6780	13100	<500	1660	9760	<500	3140	1440
PHENOLS													
phénol (indice)	mg/kg MS	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DIVERSES ANALYSES CHIMIQUES													
fluorures	mg/kg MS	10	7.3	3.6	3.2	4.5	8.6	<2	3.5	46	7.0	2.6	4.4
chlorures	mg/kg MS	800	91	17	13	10	26	<10	<10	200	<10	12	<10
sulfate	mg/kg MS	1000	18000	630	4700	49	10000	230	560	1100	79	810	430

Résultats analyses ISDI sur brut

Date du rapport 09-11-2011

Date du rapport	09-11-2011	1	1	ı						ı	1	т	
Analyse	Unité	seuils ISDI	11719980-021	11719980-022	11719980-023	11719980-024	11719980-025	11719980-026	11719980-027	11719980-028	11719980-029	11719980-030	11719980-031
		-	(A1+A2)	C1	(C3+C5)	C4	(D1+D2)	D4	D5	E1	F1	F2	F3
matière sèche	% massique		89.9	87.4	92.7	83.3	93.2	89.0	86.4	86.5	86.6	86.9	85.4
СОТ	% MS	3	8.4	2.8	1.5	1.3	2.7	2.4	4.9	4.0	2.7	3.0	<0.5
température pour mes. pH	°C		20.6	20.8	20.6	20.5	20.7	21.2	20.8	20.5	20.0	20.6	20.7
pH (KCI)	-		7.7	9.8	8.0	11.7	7.8	8.6	8.2	8.0	10.5	8.5	9.3
COMPOSES AROMATIQUES VOLATILS													
benzène	mg/kg MS		0.16	<0.05	<0.05	<0.05	<0.05	<0.05	0.54	<0.05	<0.05	0.17	<0.05
toluène	mg/kg MS		0.26	<0.05	<0.05	<0.05	0.12	0.07	0.72	<0.05	<0.05	0.30	<0.05
éthylbenzène	mg/kg MS		0.15	<0.05	<0.05	<0.05	0.07	0.29	0.45	<0.05	<0.05	0.16	<0.05
orthoxylène	mg/kg MS			<0.05	<0.05	<0.05		0.29		<0.05	<0.05	<0.05	<0.05
para- et métaxylène	mg/kg MS			<0.05	<0.05	<0.05		0.46		<0.05	<0.05	0.14	<0.05
xylènes	mg/kg MS		0.16	0.05	<0.05	<0.05	0.06	0.74	0.33	<0.05	<0.05	0.18	<0.05
BTEX total	mg/kg MS	6	0.73	<0.2	<0.2	<0.2	0.34	1.1	2.0	<0.2	<0.2	0.82	<0.2
HYDROCARBURES AROMATIQUES POLYCYCLIQUES													
naphtalène	mg/kg MS		1.8	0.75	<0.02	<0.02	0.88	0.81	7.9	0.03	1.6	2.0	0.13
acénaphtylène	mg/kg MS		<0.13	<0.02	0.02	<0.02	<0.02	<0.02	0.07	<0.02	0.02	0.04	<0.02
acénaphtène	mg/kg MS		<0.13	0.10	<0.02	<0.02	0.06	0.10	0.22	<0.02	0.07	0.14	<0.02
fluorène	mg/kg MS		<0.13	0.19	<0.02	<0.02	0.06	0.16	0.29	<0.02	0.13	0.22	<0.02
phénanthrène	mg/kg MS		1.0	0.40	0.07	<0.02					0.24	0.62	0.07
anthracène	mg/kg MS		1.9	0.10	0.03	<0.02	1				0.07	0.13	0.02
fluoranthène	mg/kg MS		1.2	0.69	0.20	<0.02	1	0.50			0.38	0.37	0.06
pyrène	mg/kg MS		0.81	0.57	0.16	<0.02	i .				0.30	0.30	0.04
benzo(a)anthracène	mg/kg MS		1.0	0.41	0.11	<0.02	1				0.25	0.32	0.05
chrysène	mg/kg MS		1.7	0.40	0.10	<0.02	0.36			0.10	0.24	0.32	0.04
benzo(b)fluoranthène	mg/kg MS		0.82	0.43	0.16	<0.02	1				0.14	0.27	0.03
benzo(k)fluoranthène	mg/kg MS		0.36	0.18	0.07	<0.02				0.07	0.06	0.12	<0.02
benzo(a)pyrène	mg/kg MS		0.36	0.26	0.11	<0.02	i .			i	0.12	0.15	<0.02
dibenzo(ah)anthracène	mg/kg MS		<0.13	0.06	0.02							0.05	<0.02
benzo(ghi)pérylène	mg/kg MS		0.24	0.18	0.09	<0.02	0.17			0.06	0.08	0.12	<0.02
indéno(1,2,3-cd)pyrène	mg/kg MS		0.23	0.16	0.09	<0.02					0.07	0.10	<0.02
HAP totaux (10) VROM	mg/kg MS		9.8	3.5	0.88	<0.2	1		15		3.1	4.2	0.43
HAP totaux (16) - EPA		50	11	4.9	1.3	<0.32	i		17		3.8	5.2	0.53
POLYCHLOROBIPHENYLS (PCI				4.0	1.0	10.02	7.7		.,	1.4	0.0	0.2	0.00
PCB 28	μg/kg MS		96	70	<2	<2	570	40	530	<2	24	370	<2
PCB 52	μg/kg MS		78	140	<2	<2	 		230		24	360	33
PCB 101	μg/kg MS μg/kg MS		56	98	<2	<2	i .	70	99	<2	16	140	59
PCB 101	μg/kg MS μg/kg MS		63	100	<2	<2	1		99		17	140	49
PCB 138	μg/kg MS μg/kg MS		57	98	<2	<2	1		110	<2	17	120	30
PCB 138			61	98 71	<2	<2	1	50	100	<2	12	95	23
PCB 180	μg/kg MS μg/kg MS		31	28	<2	<2	 		53		5.9	35	3.6
		1000	440	610	<14	<14		440		<14	120	1300	200
PCB totaux (7) HYDROCARBURES TOTAUX	μg/kg MS	1000	44 0	010	<14	<14	1100	44 0	1200	<14	120	1300	200
	ma/ka MC		Æ	Æ	Æ	-E	Æ	-E	0.6	-E	Æ	.E	-5
fraction C10-C12	mg/kg MS		<5	<5	<5	<5	<5 .c		8.6	<5 .f.	<5	<5	<5
fraction C12-C16	mg/kg MS		17	13	<5	<5		8.2	34	<5	14	22	<5
fraction C16 - C21	mg/kg MS		64	71	<5	<5	1	36	61			64	<5
fraction C21 - C40	mg/kg MS		2400	2000	14	<5	i		400	22	1000	1500	60
hydrocarbures totaux C10-C40	mg/kg MS	500	2500	2000	<20	<20	230	810	500	20	1100	1600	60

Anton Croun	
 Antea Group	

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols Rapport A64585/A

Annexe 11

Grille de codification des prestations selon le référentiel QUALIPOL

(1 page)

A	_
Antea Group)

ETABLISSEMENT PUBLIC FONCIER DE NORMANDIE

Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (27) — Diagnostic de l'état de pollution des sols

Rapport A64585/A

Activités d'étude, de conseil, d'ingénierie et de surveillance des sites pollués. CODIFICATION DES PRESTATIONS d'après l'annexe A du référentiel « ingénierie» de labellisation QUALIPOL version du 01-04-2008 et la norme NFX31-620.

VERSION 2

Code	Objectif Prestation	Prestations Ar Group	ntea	Code	Objectif Prestation	Prestations Antea Group
Α	Etudes préliminaires	Стоир				3.336
A000	Levée de doute sur la pollution chimique			C103	Etudes de faisabilité technique	
A100	Diagnostic			C104	Etudes de projet	
A101	Visite du site, risques immédiats, accidents et pollutions visibles			C200	Etablissement des dossiers administratifs, (Plan de Gestion, ICPE, Loi Eau, servitudes, etc.)	
A102	Etude historique			C300	Assistance aux contrats de travaux	
A103	Etude documentaire vulnérabilité			C400	Supervision des travaux	
A200	Investigations de terrain	Х		C401	Direction de l'exécution des travaux	
A300	Schéma conceptuel et/ou présentation de l'état des pollutions, recommandations			C401a	Direction de l'exécution des travaux avec présence permanente d'un représentant d'Antéa	
A500	Expertise indépendante			C402	Ordonnancement, Pilotage et Coordination.	
В	Analyses des impacts et des enjeux			C403	Contrôle de la mise en œuvre des mesures de gestion	
B100	IEM			C404	Assistance aux opérations de réception	
B200	Analyses quantitatives des risques (EQRS,) et des enjeux			C500	Expertise indépendante	
B201	Analyses des risques - Santé			C600	Assistance à maîtrise d'ouvrage	
B202	Analyses des Enjeux sur les ressources en Eaux			E	Surveillance	
B203	Analyses des risques - Ecosystèmes			E100	Surveillance et Contrôle des impacts	
B204	Analyses des risques - Biens matériels			E101	Conception d'un dispositif de surveillance	
B500	Expertise indépendante			E102	Réalisation et mise en place du dispositif	
С	Ingéniérie des travaux de dépollution ou AMO ou contrôle			E103	Entretien et maintenance du dispositif	
C100	Etudes de conception, mesures de gestion « optimisée »			E104	Prélèvements, mesures, observations et/ou analyses	
C101	Etudes d'avant projet, définition de solution(s) à niveau peu détaillé (technique, coût, délais, etc.)			E105	Interprétations	
C102	Bilan "coûts-avantages"			E500	Expertise indépendante	

Fiche signalétique

Rapport

Titre : Ancienne fonderie et ancienne papeterie SMURFIT à Vernon (76) – Diagnostic de l'état de pollution des sols.

Numéro et indice de version : A64585/A

Date d'envoi : *février 2012* Nombre d'annexes dans le texte : 11 Nombre de pages : *50* Nombre d'annexes en volume séparé : 0

Diffusion (nombre et destinataires):

1 ex. Auteur 2 ex. EPFN

Client

Coordonnées complètes : Etablissement Public Foncier de Normandie

Direction Aménagement et Travaux

Carré Pasteur – 5, rue Montaigne – BP 1301

76178 ROUEN Cedex 1

Téléphone : 02 32 81 66 13 Télécopie : 02 35 72 31 84

Nom et fonction des interlocuteurs : Jean-Baptiste BISSON, Chargé d'opérations

ANTEA

Unité réalisatrice : Agence Paris-Centre-Normandie / Implantation de Caen

Nom des intervenants et fonction remplie dans le projet :

Interlocuteur commercial : C. Razé Responsable de projet : C. Razé

Prélèvement des échantillons : F. Barbault

Auteur : Cl. Dubost

Secrétariat : S. LEMENUEL (signature)

Qualité

Contrôlé par : E. BELHANAFI
Date : 30/01/2012 - Version A

N° du projet : NIEP110012

Références et date de la commande : bon de commande n°77 du 23 septembre 2011

Mots-clés: diagnostic, friche industrielle, analyse, sol

Commune: Vernon (27)
Codification Qualipol: A200