

EVALUATION DU RISQUE SANITAIRE

CARRIERES DE LA ROCHE BLAIN - CRB FRESNEY-LE-PUCEUX (14)

Numéro d'affaire : KAR 19.43						
Agence : Ouest	Agence : Ouest					
Date Version Objet de la version						
24 janvier 2020	1	Version finalisée pour dépôt				

Validé par : E. CUVELIER
Signature :

PRÉAMBULE

La présente étude est réalisée conformément à la Circulaire du 9 août 2013 relative à la démarche de prévention et de gestion des risques sanitaires des installations classées soumises à autorisation.

Compte tenu de la nature du projet, à savoir l'implantation d'une centrale d'enrobage au sein d'une carrière, et d'un rejet de nouvelles substances, par rapport aux activités actuelles de la carrière, pouvant présenter des effets sanitaires, la CRB a souhaité étudier de façon approfondie le futur impact sanitaire des installations projetées sur les populations environnantes. Ainsi, l'évaluation du risque sanitaire sera réalisée selon une **approche quantitative** et comprendra les étapes suivantes :

- évaluation des émissions de l'installation,
- > identification des dangers et évaluation des relations dose-réponse,
- évaluation des enjeux et des voies d'exposition,
- évaluation prospective des risques.

Le cadre méthodologique choisi comme structure de référence est celui des guides suivants :

- le guide méthodologique INERIS d'août 2013 sur la démarche intégrée pour l'élaboration de l'état des milieux et des risques sanitaires ;
- ➢ le guide méthodologique INERIS de juillet 2003 sur l'évaluation des risques sanitaires qui définit les principes généraux de l'évaluation des risques sanitaires ;
- le guide pour l'analyse du volet sanitaire des études d'impact février 2000 de l'INVS.

Le guide sur l'Evaluation de l'état des milieux et des risques sanitaires » de l'INERIS d'août 2013, précise que l'évaluation des risques sanitaires concerne l'impact des rejets atmosphériques (canalisés et diffus) et aqueux de l'installation classée sur l'homme, exposé directement ou indirectement après transferts via les milieux environnementaux (air, sols, eaux superficielles et/ou souterraines et/ou chaîne alimentaire ...).

Il s'agit alors d'étudier les risques chroniques liés à une exposition à long terme des populations riveraines aux émissions de l'installations projetée. Ces populations sont positionnées hors périmètre du site et dans le domaine d'étude appelé aussi zone d'étude.

SOMMAIRE

1	SYN	THESE	DE L'IMPACT SANITAIRE ACTUEL	. 5
	1.1	DOMAI	NE DE L'AIR	. 5
	1.2	EMISS:	IONS SONORES	. 6
2	CON	ICEPTU	JALISATION DE L'EXPOSITION	. 7
	2.1	EVALU	ATION DES EMISSIONS DE LA CENTRALE D'ENROBAGE	. 7
	2.1.	1 SY	NTHESE DE L'ETUDE D'IMPACT	. 7
	2.1	2 DE	SCRIPTION DES SOURCES	10
	2.1.	3 BI	LAN QUANTITATIF DES FLUX	12
	2.1.	4 VE	RIFICATION DE LA CONFORMITE DES EMISSIONS	16
	2.2	SELEC	TION DES SUBSTANCES D'INTERET	17
	2.2.	1 DA	ANGEROSITE DE LA SUBSTANCE	17
	2.2.	2 TC	OXICITE RELATIVE A LA SUBSTANCE	18
	2.2.	3 FL	UX	23
	2.2.	4 CC	DMPORTEMENT DE LA SUBSTANCE DANS L'ENVIRONNEMENT	23
	2.2.	5 PR	RESENTATION DES TRACEURS RETENUS	24
3	EVA	LUATI	ON DES ENJEUX ET DES VOIES D'EXPOSITION	26
	3.1	DELIM:	ITATION DE LA ZONE D'ETUDE	26
			XTE ENVIRONNEMENTAL ET USAGES	
	3.2.	1 LC	OCALISATION DU PROJET	26
	3.2.	2 DC	DNNEES DE L'ETAT INITIAL	26
	3.2.	3 US	SAGES DE LA ZONE D'ETUDE	28
	3.3	CARAC	TERISATION DES POPULATIONS	30
	3.3.	1 DE	SCRIPTION GENERALE DE LA POPULATION DE LA ZONE D'ETUDE	30
	3.3	2 PR	OJETS IMMOBILIERS - ZONES A CONSTRUIRE	30
	3.3	3 ET	ABLISSEMENTS RECEVANT DU PUBLIC	30
	3.3.	4 RE	CENSEMENT DES POPULATIONS SENSIBLES	31
	3.4	AUTRE	S ETUDES SANITAIRES D'IMPACT	33
	3.5	SCHEM	IA CONCEPTUEL	36
4	EVA	LUATI	ON PROSPECTIVE DES RISQUES SANITAIRES	38
	4.1	IDENT:	IFICATION DES DANGERS	38
	4.1.	1 EF	FETS SUR LA SANTE	38
	4.1	2 DE	EVENIR DANS L'ENVIRONNEMENT DES SUBSTANCES RETENUES	40
	4.2	EVALU	ATION DES RELATIONS DOSE-REPONSE	41
	4.3	EVALU	ATION DE L'EXPOSITION	41
	4.3.	1 ES	STIMATION DES CONCENTRATIONS DANS LES MILIEUX D'EXPOSITION	41
	4.3	2 DE	SCRIPTION DES SCENARIOS D'EXPOSITION	57
	4.3	3 CA	ALCUL DES NIVEAUX D'EXPOSITION	59

6	ME	тно	DOLOGIE	72
5	COI	NCL	USION DE L'EVALUATION DU RISQUE SANITAIRE	70
	4.6.	.4	INCERTITUDES LIFES A LA MODELISATION	. 69
	4.6.	.3	INCERTITUDES LIEES AUX SCENARIOS D'EXPOSITION	
	4.6.	.2	INCERTITUDES LIEES AUX VTR	67
	4.6.	. 1	INCERTITUDES LIEES AUX EMISSIONS	67
	4.6	INC	ERTITUDES	67
	4.5	SUI	VI DES TRACEURS DE POLLUTION	66
	4.4.	.3	EVALUATION DES EFFETS SANS SEUIL	64
	4.4.	.2	EVALUATION DES EFFETS CANCERIGENES A SEUIL	63
	4.4.	.1	EVALUATION DES EFFETS SYSTEMIQUES A SEUIL	61
	4.4	CAF	RACTERISATION DES RISQUES POUR LES REJETS ATMOSPHERIQUES	61

1 SYNTHESE DE L'IMPACT SANITAIRE ACTUEL

Les éléments concernant la situation actuelle (carrière uniquement) sont issus du DDAE de 2018.

« Il ressort des caractéristiques des activités présentes (extraction et traitement de grès et schistes, accueil de déchets inertes) et des éléments fournis par l'étude d'impact (analyse de l'état initial, des effets, des mesures prévues), que parmi tous les éléments abordés, et malgré la mise en évidence de leur importance limitée, seront retenus comme potentiellement susceptibles d'être à l'origine de risques sanitaires pour les populations riveraines :

- > les poussières,
- les émissions gazeuses,
- les bruits.

En effet, il apparaît que les autres éléments abordés soient sans effets sur la santé des riverains :

- la qualité des eaux rejetées non utilisées localement pour les besoins domestiques,
- les odeurs très faibles, voire nulles, et limitée dans l'espace,
- les vibrations très ponctuelles,
- > les déchets à caractère inerte,
- les émissions lumineuses très limitées et de faible importance. »

1.1 DOMAINE DE L'AIR

Les rejets atmosphériques de la carrière et les risques sanitaires inhérents sont les suivants :

Type de rejet	Source	Paramètre	Evaluation de l'exposition	Caractérisation des risques sanitaires
Poussière	Les poussières émises sur la carrière de la Roche Blain proviendront des activités d'extraction et de traitement des grès et schistes et d'accueil de déchets inertes dans le cadre de la remise en état du site	PM	 En raison des mesures mise en place sur le site pour réduire l'émission et la propagation des poussières, celles-ci seront limitées et ponctuelles. D'autre part, les conditions de remise en état du site (maintien de la végétation périphérique et sur les zones non encore exploitées, végétalisation progressive des surfaces remblayées) en réduisant les zones dénudées favorisent la réduction de l'émission de poussières. conditions climatiques locales humides favorisent la réduction de la propagation des poussières. Au regard de la réglementation, il y a obligation d'établir un plan de surveillance des retombées de poussières dans l'environnement. Au vu des résultats des campagnes de mesures antérieures (méthode des plaquettes), les retombées de poussières sont faibles, bien inférieures à la valeur des 30 g/m²/mois (zone faiblement empoussiérée). 	En conséquence, les risques sanitaires liés aux poussières générées par l'activité de la carrière de la Roche Blain peuvent être considérés comme quasiment nuls.

Type de rejet	Source	Paramètre	Evaluation de l'exposition	Caractérisation des risques sanitaires
Emissions gazeuses	Les émissions gazeuses, faibles et ponctuelles, émises au niveau de la carrière de la Roche Blain proviendront essentiellement des moteurs thermiques des engins, matériels et véhicules circulant sur le site (gaz d'échappement)	dioxyde de carbone (CO2), des oxydes d'azote (NOx), du dioxyde de soufre (SO2), des particules et de la vapeur d'eau	 Les rejets provenant des véhicules évoluant sur le site, très localisés, peuvent être ressentis à proximité immédiate de ces véhicules. Il est fort probable, en raison des distances existant entre sources et riverains, que leur zone d'influence n'atteigne pas les populations riveraines d'autant que la vitesse est limitée sur le site à 20 km/h, ce qui réduit la production de gaz d'échappement, et que les moteurs sont mis à l'arrêt lorsque les véhicules sont en station ou en attente. Les émissions gazeuses se propagent dans l'air; leurs effets sont temporaires, limités dans le temps à la période d'autorisation d'exploiter la carrière de la Roche Blain. D'autre part, des dispositions sont prises sur le site pour limiter les émissions gazeuses. 	En conséquence, les risques sanitaires liés aux émissions gazeuses générées par l'activité de la carrière de la Roche Blain peuvent être considérés comme nuls.

1.2 EMISSIONS SONORES

Les émissions sonores de la carrière et les risques sanitaires inhérents sont les suivants :

Type de rejet	Source	Evaluation de l'exposition	Caractérisation des risques sanitaires
Bruit	Les sources de bruits sur la carrière de la Roche Blain sont liées aux activités présentes (extraction et traitement de matériaux avec accueil de déchets inertes) A noter que l'émission des bruits à partir de chaque source sonore identifiée sur le site ne se fait pas de façon continue ; les bruits étant d'autant plus discontinus que l'activité de la carrière de la Roche Blain se fait au rythme de la production et de l'apport de déchets inertes en fonction de la variabilité des chantiers.	 Les niveaux sonores générés par toute ICPE doivent respecter les valeurs seuils réglementaires, en particulier ils ne doivent pas engendrer une émergence supérieure aux valeurs admissibles fixées par la règlementation dans les zones où celle-ci est réglementée. Les niveaux sonores relevés lors des contrôles entre 2006 et 2016 dans les zones à émergence réglementée périphériques conformes à la réglementation, sont compris entre 38 et 50 dB(A) en période diurne et entre 33 et 51 dB(A) en période nocturne, carrière en activité. Ces niveaux restent bien en deçà des niveaux provoquant un quelconque danger auditif. Les bruits se propagent dans l'air; leurs effets sont temporaires, limités dans le temps à la période d'autorisation d'exploiter la carrière de la Roche Blain. D'autre part, des dispositions sont prises sur le site pour limiter la perception des bruits par le voisinage. 	En conséquence, les risques sanitaires liés aux bruits générés par l'activité de la carrière de la Roche Blain peuvent être considérés comme nuls.

« En conclusion, il ressort des éléments précédents que **le risque sanitaire induit par la carrière** de la Roche Blain sur les populations riveraines pouvant être liés à la transmission de pollution par l'air (poussières, émissions gazeuses, bruits) **peut être considéré comme quasi nul à nul**. »

2 <u>CONCEPTUALISATION DE L'EXPOSITION LIEE A LA NOUVELLE CENTRALE</u> D'ENROBAGE

2.1 EVALUATION DES EMISSIONS DE LA CENTRALE D'ENROBAGE

Au préalable, afin de faciliter la compréhension du lecteur, un synoptique du fonctionnement de la centrale d'enrobage projetée est disponible en page suivante.

2.1.1 SYNTHESE DE L'ETUDE D'IMPACT

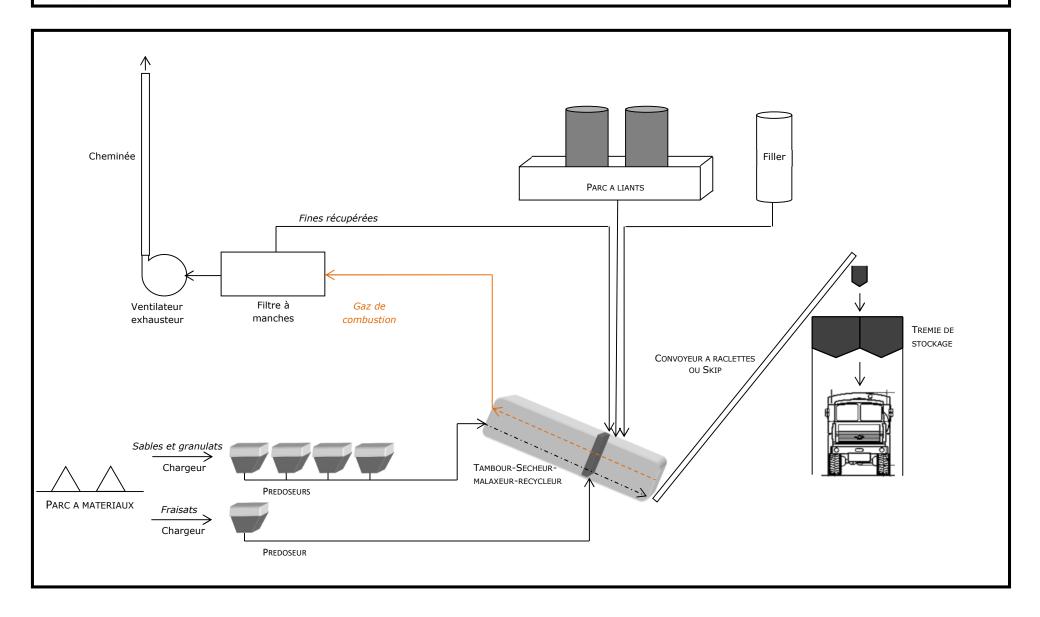
A) DOMAINE DE L'EAU

Le réseau du projet sera de type séparatif. Les rejets sont synthétisés dans le tableau ci-dessous.

Nature de l'effluent	Nature du rejet	Traitement interne	Exutoire	
Eaux pluviales	Eaux pluviales potentiellement chargées en hydrocarbures et en matières en suspension (aires imperméabilisées)	Séparateur d'hydrocarbures Bassin de rétention étanche Bief (existant)	Milieu naturel : fossé puis la Laize (point	
	Eaux pluviales ruisselant sur les autres surfaces du projet	Bassin de rétention étanche Bief (existant)	de rejet existant)	
Eaux sanitaires	Eaux vannes des sanitaires	Cuve étanche et pompage	Evacuées en tant que déchet	

L'ensemble des effluents sera pris en compte et fera l'objet d'un traitement adapté.

A noter que la centrale d'enrobage ne générera pas d'effluents industriels.


Seules des eaux pluviales feront l'objet d'un rejet au milieu naturel (la Laize) après traitement au niveau du seul point de rejet existant autorisé. Elles respecteront les valeurs limites de rejet applicables.

Les polluants caractérisant les effluents de la centrale d'enrobage, à savoir MES, DBO₅, DCO, hydrocarbures, correspondent à des paramètres considérés comme des indicateurs de pollution et **ne sont pas retenus pour l'étude**.

De plus, il convient de rappeler que la centrale d'enrobage sera implantée au niveau d'une plateforme déjà aménagée pour le transit de matériaux inertes et donc déjà à l'origine d'eaux de ruissellement. A ce jour, il a été jugé dans le DDAE de 2018 que la carrière n'avait aucun impact sanitaire dans le domaine de l'eau. Ainsi, le projet ne viendra pas modifier l'impact sanitaire actuel de la CRB.

Synoptique de fabrication

B) DOMAINE DE L'AIR

Les rejets atmosphériques de la future centrale d'enrobage seront les suivants :

Typologie Localisation		Equipements concerné	Nature des rejets
Canalisé	alisé Centrale d'enrobage Tambour sécheu malaxeur		Gaz de combustion du brûleur fonctionnant au fioul TBTS Vapeurs liées au bitume (COV, HAP)
	Centrale d'enrobage	Chargement des camions	Vapeurs liées au bitume (COV, HAP)
Diffus	Parc à liants	Events des cuves de stockage de matières bitumineuses et de fioul	Vapeurs liées aux stockages de bitume et de fioul (COV, HAP)
	Parc à matériaux	-	Ré-envol de poussières
	Voiries	-	Ré-envol de poussières

A noter également, dans une moindre mesure, les gaz de combustion des chaudières (installation de maintien en température des cuves de bitume) et des groupes électrogènes (production d'électricité).

Toutefois, comme précisé dans le « Guide pour le choix des composés émis dans le cadre des études d'évaluation de risques sanitaires » du CAREPS (juin 2010), les rejets diffus, s'ils peuvent avoir un impact immédiat dans l'environnement, <u>étant peu dispersés et négligeables</u>, les populations ont peu tendance à être concernées par une exposition provenant des rejets diffus. Compte tenu de ces éléments, **les rejets diffus ne sont pas retenus dans le guide** (négligeables devant les rejets canalisés). De plus, la plateforme étant actuellement exploitée pour le transit de matériaux inertes, elle est déjà à l'origine d'émission de poussières diffuses, et l'impact avait été jugé nul lors du DDAE de 2018.

Les installations de combustion, au vu de leurs faibles puissances, ne seront pas retenues (émissions négligeables).

Par conséquent, l'unique source retenue sera la cheminée du filtre à manches du tambour sécheur malaxeur.

C) DOMAINE DU BRUIT

Le projet sera à l'origine de nouvelles sources sonores liées au fonctionnement :

- au fonctionnement des équipements de production (tambour sécheur/recycleur/malaxeur, convoyeurs, etc.),
- au fonctionnement des installations annexes (ventilateur d'extraction de l'air, opérations de décolmatage du filtre à manches, compresseurs d'air, chaudière, etc.);
- à la circulation sur le site (chargeuse alimentant les trémies prédoseuses, livraisons des matières premières, expéditions des produits finis, etc.).

La future centrale d'enrobage sera implantée au sein du périmètre d'exploitation de la CRB déjà, à ce jour, à l'origine d'émissions sonores. La zone concernée par le projet est, de plus, située à proximité d'un axe majeur de circulation, à savoir la route départementale RD 562. Ainsi, le niveau sonore de la zone d'étude est fortement influencé par les activités autorisées de la carrière et la circulation routière.

De plus, la plateforme sur laquelle sera implantée la centrale d'enrobage est située sur une ancienne zone d'extraction, en contrebas par rapport à l'extérieur du site. Le front de taille d'environ 25 à 30 m fera donc obstacle à la propagation du bruit.

Enfin, les installations sonores seront, dans la mesure du possible, capotées.

Une campagne de mesures acoustiques sera réalisée dans les mois qui suivront le démarrage de la centrale d'enrobage, afin de s'assurer du respect des valeurs réglementaires.

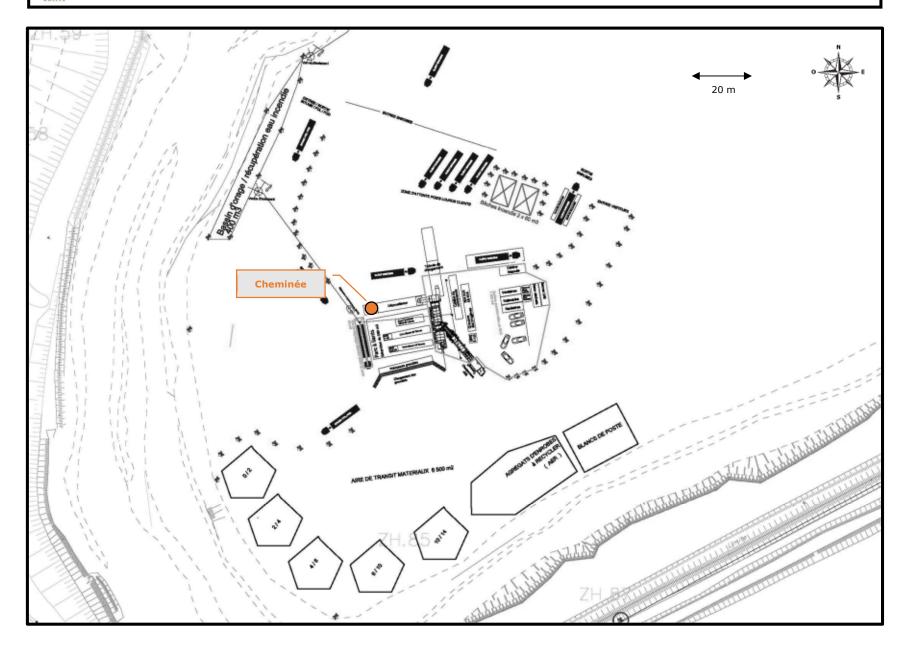
Par conséquent, comme c'est le cas actuellement, la CRB ne sera pas à l'origine d'un impact sanitaire dans le domaine du bruit.

D) DOMAINE DES DECHETS

Le fonctionnement de la centrale d'enrobage génèrera peu de déchets. Ils ne présenteront pas de phénomènes d'envols et seront stockés de façon à les protéger des eaux de ruissellement. Ainsi, il n'y aura pas de contact possible entre les déchets générés par les activités projetées et les populations environnantes, d'où **l'absence de risque sanitaire**.

2.1.2 DESCRIPTION DES SOURCES

L'unique source retenue est la cheminée du filtre à manches du tambour sécheur malaxeur (émissions atmosphériques canalisées.)


A) FONCTIONNEMENT NORMAL

Les sources d'émission caractérisant un fonctionnement normal des installations seront les suivantes :

Nature	Origine	Caractéristiques	Substances émises	Milieu récepteur
			PM	
	_ , , , ,	Hauteur cheminée = 19 m	CO	
Fasianiana		Diamètre = 1,2 m	SO ₂	Milieu naturel
Emissions atmosphériques	Tambour sécheur malaxeur	Débit sur gaz humide = 59 000 Nm³/h	NOx	Air - Sol
dimospheriques	malaxear	Température = 130 °C	COV	All - 301
		Vitesse minimale d'émission = 8 m/s	HAP	
			Métaux	

La source est localisée sur le plan en page suivante.

Localisation de la source d'émission

B) FONCTIONNEMENT DEGRADE

Un fonctionnement dégradé pourra être observé au cours des périodes d'entretien, de remplacements d'équipements, de phases de démarrage ou d'arrêt, de dysfonctionnement prévisible des systèmes de traitement.

Cependant, en période d'entretien programmé ou non, les installations concernées sont mises à l'arrêt. Il n'y a donc plus de rejet de polluants à l'atmosphère.

De plus, par définition, les périodes de démarrage et d'arrêt sont transitoires et ne durent pas dans le temps. Elles correspondent à des situations dégradées ponctuelles et ne sont pas représentatives d'un fonctionnement normal de l'installation.

Par conséquent, seuls les rejets de la centrale considérés en mode de fonctionnement normal seront étudiés dans la suite de l'étude.

2.1.3 BILAN QUANTITATIF DES FLUX

Le chapitre suivant présente le bilan quantitatif des flux pour les sources susceptibles d'avoir un impact à priori non négligeable sur l'environnement et la santé.

Comme précisé ci-avant, seules les émissions atmosphériques canalisées de la centrale d'enrobage seront retenues.

A) BILAN MAJORANT

Le bilan majorant est établi sur la base des données suivantes :

Nature de l'effluent	Source	Flux		
Rejets atmosphériques	Données exploitant	Caractéristiques de la source d'émission (cheminée)		
canalisés	Données règlementaires	Valeurs Limites d'Emission issues de l'arrêté du 09/04/2019 (rubrique 2521 enregistrement)		

Les flux du bilan majorant sont les suivants (flux horaires) :

Paramètre		VLE (mg/Nm3)	Débit (Nm3/h)	Flux (kg/h)
	PM	50		2,95E+00
	CO	500		2,95E+01
	SO2	300		1,77E+01
	NOx	350		2,06E+01
(COVnm	110		6,48E+00
	HAP	0,2		1,18E-02
	Cd + Hg + Tl	0,1	59 000	5,89E-03
	As + Se + Te	1		5,89E-02
Métaux	Pb	1		5,89E-02
	Sb + Cr + Co + Cu + Sn + Mn + Ni + V + Zn	5		2,95E-01

B) BILAN MOYEN

Le Groupe EIFFAGE, auquel appartient la carrière CRB, dispose de plusieurs centrales d'enrobage à chaud sur le territoire français. Les mesures atmosphériques réalisées sur des installations similaires à celle qui sera mise en place sur CRB peuvent donc être utilisées pour l'établissement du bilan moyen. Il convient de préciser que les mesures retenues proviennent d'installations similaires, fonctionnant avec le même combustible (fioul lourd) et présentant une capacité de production semblable.

Le bilan moyen est établi sur la base des données suivantes :

Nature de l'effluent	Source	Flux
Rejets atmosphériques	Données	Caractéristiques de la source d'émission (cheminée) et temps de fonctionnement majorant
canalisés	exploitant	Flux mesurés sur des installations similaires (moyenne)

Les flux du bilan moyen sont les suivants (flux horaires) :

Pā	Flux (kg/h)		
	PM	1,22E+00	
	CO	2,07E+01	
	S02	7,67E+00	
	NOx	2,95E+00	
	COVnm		
	HAP		
	Cd + Hg + Tl	4,22E-05	
	As + Se + Te	5,06E-05	
Métaux	Pb	5,71E-04	
	Sb + Cr + Co + Cu + Sn + Mn + Ni + V + Zn	1,94E-03	

C) BILAN DES FLUX

Sur base des éléments présentés ci-avant, les flux majorant et moyen sont les suivants :

P	aramètre	Flux majorant (kg/h)	Flux moyen (kg/h)	Flux retenu (kg/h)	Heures de fonctionnement (h/an)	Flux annuel (t/an)
	PM	2,95E+00	1,22E+00	2,95E+00		1,04E+00
	СО	2,95E+01	2,07E+01	2,95E+01		1,04E+01
	S02	1,77E+01	7,67E+00	1,77E+01		6,24E+00
	NOx	2,06E+01	2,95E+00	2,06E+01		7,28E+00
	COVnm	6,48E+00	1,28E+00	6,48E+00		2,29E+00
	HAP	1,18E-02	5,92E-05	1,18E-02	353	4,16E-03
	Cd + Hg + Tl	5,89E-03	4,22E-05	5,89E-03		2,08E-03
	As + Se + Te	5,89E-02	5,06E-05	5,89E-02		2,08E-02
Métaux	Pb	5,89E-02	5,71E-04	5,89E-02		2,08E-02
	Sb + Cr + Co + Cu + Sn + Mn + Ni + V + Zn	2,95E-01	1,94E-03	2,95E-01		1,04E-01

Concernant les COV, l'étude du CAREPS retient les paramètres spécifiques suivants :

Paramètre	VLE éq. C	Part*	Concentration retenue
	mg/m³	%	mg/m³
Acétaldéhyde		3,8	4,18
Acroléine		0,8	0,88
Benzène	110	2,3	2,53
Formaldéhyde		3,6	3,96
Phénol		3,8	4,18

^{*} poids moyen + écart type. Se référer à l'étude du CAREPS pour plus de détail

<u>Concernant les métaux</u>, la même étude du CAREPS indique les répartitions suivantes :

Dawawa kana	VLE	Part	Concentration
Paramètre	mg/m³	%	mg/m³
Cd	0,05	60	0,03
Hg	0,05	30	0,02
TI	0,05	1	-
As		25	0,25
Se	1	40	0,4
Te		=	-
Pb	1	100	1
Sb		10	0,5
Cr	5	35	1,75
Со		20	1
Cu		-	-

Paramètre	VLE	Part	Concentration
Parametre	mg/m³	%	mg/m³
Sn		ī	-
Mn		15	0,75
Ni		10	0,5
V		-	-
Zn		-	-

De plus, en ce qui concerne le chrome, l'étude propose d'appliquer une part chrome VI / chrome total de 0,02. Ainsi, la répartition concernant le chrome sera 98 % chrome III et 2 % chrome VI.

<u>Concernant les HAP</u>, la totalité sera assimilée au naphtalène considéré comme représentatif des effets à seuil et au benzo-a-pyrène pour les effets sans seuil.

Dans le contexte, **les flux retenus dans la suite de l'étude** sont les suivants (valeur la plus élevée entre les bilans majorant et moyen) :

Parar	Flux annuel (t/an)		
P	PM		
С	0	1,04E+01	
S)2	6,24E+00	
NO	Ох	7,28E+00	
	Acétaldéhyde	8,69E-02	
	Acroléine	1,83E-02	
COV	Benzène	5,26E-02	
	Formaldéhyde	8,24E-02	
	Phénol	8,69E-02	
H	Λ P	4,16E-03	
	Cd	6,24E-04	
	Hg	3,12E-04	
	As	5,20E-03	
	Se	8,32E-03	
	Pb	2,08E-02	
Métaux	Sb	1,04E-02	
	Cr III	3,57E-02	
	Cr VI	7,28E-04	
	Со	2,08E-02	
	Mn	1,56E-02	
	Ni	1,04E-02	

D) FIABILITE DU BILAN DES EMISSIONS

Les hypothèses prises dans le cadre du bilan de flux sont basées :

- sur des données techniques constructeurs (caractéristiques d'émission),
- sur des valeurs réglementaires (concentrations en polluants), pour l'établissement du bilan majorant,
- sur des valeurs mesurées sur des installations similaires (même combustible et capacité de production semblable) pour le bilan moyen. La moyenne des flux mesurés est basée sur 6 mesures exceptés pour les HAP et les métaux pour lesquels une seule mesure est disponible),
- sur des projections de fonctionnement (temps annuel de fonctionnement),
- sur des données bibliographiques établies par un organisme reconnu pour le choix des traceurs et la répartition (COV et métaux).

Elles sont donc jugées représentatives de la future centrale d'enrobage que CRB projette d'exploiter.

Les flux majorant et moyen ont été comparés afin de retenir, pour chaque paramètre, la valeur la plus importante.

Nota : la synthèse des incertitudes liées au bilan des émissions est disponible dans un paragraphe spécifique à la fin de la présente étude.

2.1.4 VERIFICATION DE LA CONFORMITE DES EMISSIONS

L'installation étudiée étant actuellement au stade de projet, la vérification de la conformité des émissions n'est pas possible.

Toutefois, les installations seront exploitées conformément à l'arrêté ministériel du 09/04/2019 et les mesures périodiques réglementaires seront réalisées afin de s'assurer du respect des VLE.

2.2 SELECTION DES SUBSTANCES D'INTERET

On distingue parmi les substances émises celles qui sont pertinentes en tant que :

- ⋄ traceurs d'émission ; ou
- ♥ traceurs de risque.

Les <u>traceurs d'émission</u> sont les substances susceptibles de révéler une contribution de l'installation aux concentrations mesurées dans l'environnement, et éventuellement une dégradation des milieux attribuable à ses émissions. Ils sont considérés pour le diagnostic et l'analyse des milieux et lors de la surveillance environnementale.

Les <u>traceurs de risque</u> sont les substances émises susceptibles de générer des effets sanitaires chez les personnes qui y sont exposées. Ils sont considérés pour l'évaluation quantitative des risques.

Les critères suivants sont pris en compte pour la sélection des substances d'intérêt :

- ⋄ la dangerosité de la substance ;
- ⋄ la toxicité relative à la substance ;
- ⋄ le flux de la substance à l'émission ;
- ⊎ le comportement de la substance dans l'environnement ;
- ♦ la concentration mesurée dans l'environnement.

Etant donné la présence de population dans la zone d'étude, le critère vulnérabilité des populations et ressources est considéré par défaut.

2.2.1 DANGEROSITE DE LA SUBSTANCE

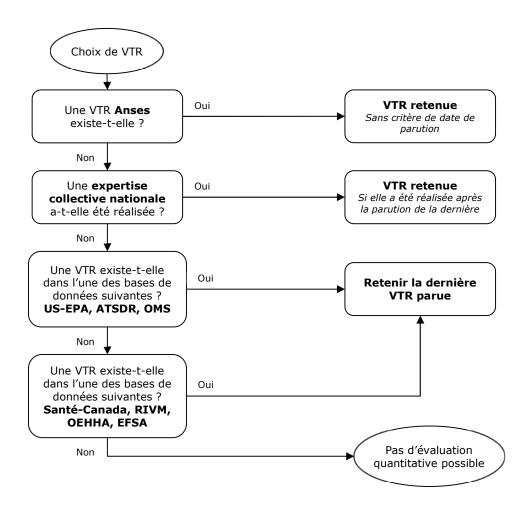
Elle se traduit par son caractère cancérogène, mutagène ou reprotoxique. L'évaluation de ces risques est déterminée sur la base des classifications de l'US-EPA, du CIRC et de l'Union Européenne, présentées dans le tableau ci-après.

Organisme	Classe	Intitulé
	Α	Substance cancérogène pour l'homme
	B1 / B2	Substance probablement cancérogène pour l'homme
US-EPA	С	Substance cancérogène possible pour l'homme
	D	Substance non classifiable quant à sa cancérogénicité pour l'homme
	E	Substance non cancérogène pour l'homme
	1	Agent ou mélange cancérogène pour l'homme
	2A	Agent ou mélange probablement cancérogène pour l'homme
CIRC / OMS	2B	Agent ou mélange pouvant être cancérogène pour l'homme
	3	Agent ou mélange ne pouvant être classé pour sa cancérogénicité pour l'homme
	4	Agent ou mélange probablement pas cancérogène pour l'homme
	C1A	Substances dont le potentiel cancérogène pour l'être humain est avéré
Union Européenne	C1B	Substances dont le potentiel cancérogène pour l'être humain est supposé

Organisme	Classe	Intitulé
	C2	Substances suspectées d'être cancérogènes pour l'homme
	M1A	Substances dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée
	M1B	Substances à considérer comme induisant des mutations héréditaires dans les cellules germinales des êtres humains
	M2	Substances préoccupantes du fait qu'elles pourraient induire des mutations héréditaires dans les cellules germinales des êtres humains
	R1A	Substances dont la toxicité pour la reproduction humaine est avérée
	R1B	Substances présumées toxiques pour la reproduction humaine
	R2	Substances suspectées d'être toxiques pour la reproduction humaine

Les substances classées A, B1, B2 ou C selon l'US-EPA et 1, 2A ou 2B selon le CIRC et les catégories 1A, 1B et 2 selon l'Union Européenne seront retenues en tant que traceur de risque.

Lorsque le potentiel cancérogène, mutagène ou reprotoxique d'une substance est avéré, une Valeur Toxicologique de Référence sans seuil est établie pour ces effets cancérogènes mutagènes ou reprotoxiques. Pour les effets cancérigènes non génotoxiques, une VTR à seuil doit être privilégiée, lorsqu'elle existe, à une éventuelle VTR sans seuil.


2.2.2 TOXICITE RELATIVE A LA SUBSTANCE

Elle est validée par une Valeur Toxicologique de Référence issue de la littérature (ANSES, US-EPA, ATSDR, OMS/IPCS, Health Canada, RIVM, OEHHA et EFSA), déterminée pour un effet à seuil ou sans seuil, et pour une voie d'exposition.

A noter que les VTR à seuil peuvent être représentatives d'effets systémiques ou de précurseurs d'effets cancérigènes.

Toute substance ne présentant pas de VTR ne sera pas retenue en tant que traceur de risque.

Conformément à la note d'information n°DGS/EA1/DGPR/2014/307 du 31 octobre 2014 relative aux modalités de sélection des substances chimiques et de choix des valeurs toxicologiques de référence pour mener les évaluations des risques sanitaires dans le cadre des études d'impact et de la gestion des sites et sols pollués, le choix de la Valeur Toxicologique de Référence s'effectuera suivant le logigramme ci-dessous.

Les valeurs limites d'exposition professionnelle (VLEP) ou les valeurs guides de qualité des milieux ne constituent pas à proprement parler des valeurs toxicologiques de référence ; elles peuvent toutefois servir d'élément de comparaison.

En annexe de l'étude sont présentées, pour chaque substance retenue, l'ensemble des Valeurs Toxicologiques de Référence publiées par les organismes de notoriété internationale pour des effets à seuil et sans seuil et par voie d'exposition.

Le tableau ci-après présente, pour les substances retenues, les effets sur la santé et les Valeurs Toxicologiques de Référence sélectionnées pour la suite de l'étude :

Substance	Voie d'exposition	Organes cibles	Valeur Toxicologique de Référence retenue
Dioxyde de soufre	Inhalation	<u>Effets systémique à seuil</u> : Système respiratoire	Effets systémique à seuil : VR = 0,05 mg/m³ sur 24 h (R422-1 CE)
CAS : 7446-09-5	Timalation	Effets cancérigènes sans seuil : Pas d'information	Effets cancérigènes sans seuil : Pas de valeur
Oxydes d'azote CAS: 10102-44-0 10102-43-9	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : VR = 0,04 mg/m³ (R422-1 CE) Effets cancérigènes sans seuil : Pas de valeur
Monoxyde de carbone CAS: 630-08-0	Inhalation	Effets systémique à seuil : Cerveau, système cardiaque, système musculaire et développement Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : VR = 10 mg/m³ (R422-1 CE) Effets cancérigènes sans seuil : Pas de valeur
Poussières (PM _{2,5}) CAS:	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : VG = 0,025 mg/m³ (R422-1 CE) Effets cancérigènes sans seuil : Pas de valeur
Acétaldéhyde CAS : 75-07-0	Inhalation	Effets systémique à seuil : Epithélium olfactif Effets cancérigènes sans seuil : Cancer nasal	Effets systémique à seuil : VGAI = 0,16 mg/m³ (ANSES 2014) Effets cancérigènes sans seuil : ERUi = 2,2.10 ⁻⁶ (µg/m³) ⁻¹ (US-EPA 1998)
Acroléine CAS: 107-02-8	Inhalation	Effets systémique à seuil : Lésions de l'épithélium respiratoire supérieur Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : VGAI = 8.10 ⁻⁴ mg/m³ (ANSES 2013) Effets cancérigènes sans seuil : Pas de valeur
Benzène CAS : 71-43-2	Inhalation	Effets systémique à seuil : Système immunitaire Effets cancérigènes sans seuil : Leucémie	Effets systémique à seuil : VTR = 0,01 mg/m³ (ANSES 2008) Effets cancérigènes sans seuil : ERUi = 2,6.10 ⁻⁵ (µg/m³) ⁻¹ (ANSES 2014)
Formaldéhyde CAS : 50-00-0	Inhalation	Effets systémique à seuil : Système oculaire Effets cancérigènes sans seuil : Cancer du nez	Effets systémique à seuil : VTR = 0,123 mg/m³ (ANSES 2018) Effets cancérigènes sans seuil : ERUi = 5,26.10-6 (μg/m³)-1 (Health Canada 2000)
Phénol CAS : 108-95-2	Inhalation	Effets systémique à seuil : Système circulatoire, reins, système nerveux Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : REL = 0,2 mg/m³ (OEHHA 2003) Effets cancérigènes sans seuil : Pas de valeur
	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Eq. BaP	Effets systémique à seuil : VTR = 0,037 mg/m³ (ANSES 2013) Effets cancérigènes sans seuil : Eq. BaP
Naphtalène CAS : 91-20-3	Ingestion	Effets systémique à seuil : Poids Effets cancérigènes sans seuil : Eq. BaP	Effets systémique à seuil : RfD = 2.10 ⁻² mg/kg/j (US-EPA 1998) Effets cancérigènes sans seuil : Eq. BaP

Substance	Voie d'exposition	Organes cibles	Valeur Toxicologique de Référence retenue
		<u>Effets systémique à seuil</u> : cf. Naphtalène	Effets systémique à seuil : cf. Naphtalène
Benzo-a- pyrène	Inhalation	Effets cancérigènes sans seuil : Cancer du tractus respiratoire supérieur	Effets cancérigènes sans seuil : ERUi = $1,1.10^{-3}$ (µg/m ³) ⁻¹ (OEHHA 2008)
CAS : 50-32-8	Ingestion	<u>Effets systémique à seuil</u> : cf. Naphtalène	<u>Effets systémique à seuil</u> : cf. Naphtalène
	Ingestion	<u>Effets cancérigènes sans seuil</u> : Cancer du système gastrointestinal	Effets cancérigènes sans seuil : ERUo = 1 (mg/kg/j) ⁻¹ (US-EPA 2017)
		<u>Effets systémique à seuil</u> : Système rénal	Effets systémique à seuil : VTR = 4,5.10 ⁻⁴ mg/m³ (ANSES 2012)
	Inhalation	Effets cancérigène à seuil : Cancer de l'appareil respiratoire	Effets cancérigène à seuil : VTR = 3.10 ⁻⁴ mg/m³ (ANSES 2012)
Cadmium CAS : 7440-43-9		Effets cancérigènes sans seuil : Pas d'information	<u>Effets cancérigènes sans seuil</u> : Pas de valeur
7440-43-9	Tu a a a bi a u	<u>Effets systémique à seuil</u> : Os	Effets systémique à seuil : VTR = 3,5.10 ⁻⁴ mg/kg/j (ANSES 2017)
	Ingestion	<u>Effets cancérigènes sans seuil</u> : Pas d'information	<u>Effets cancérigènes sans seuil</u> : Pas d'information
	Inhalation	<u>Effets systémique à seuil</u> : Système nerveux	Effets systémique à seuil : REL = 3.10 ⁻⁵ mg/m³ (OEHHA 2008)
Mercure	Innaiation	<u>Effets cancériqènes sans seuil</u> : Pas d'information	<u>Effets cancérigènes sans seuil</u> : Pas de valeur
CAS : 7439-97-6	Incastion	<u>Effets systémique à seuil</u> : Non précisé	Effets systémique à seuil : ADI = 5,7.10 ⁻⁴ mg/kg/j (EFSA 2012)
	Ingestion	<u>Effets cancérigènes sans seuil</u> : Pas d'information	<u>Effets cancérigènes sans seuil</u> : Pas de valeur
	Inhalation	<u>Effets systémique à seuil</u> : Système nerveux	Effets systémique à seuil : REL = 1,5.10 ⁻⁵ mg/m³ (OEHHA 2008)
Arsenic	Illialation	<u>Effets cancérigènes sans seuil</u> : Pas d'information	Effets cancérigènes sans seuil : ERUi = $1,5.10^{-4}$ (µg/m ³) ⁻¹ (TCEQ 2012)
CAS : 7440-38-2	Ingestion	<u>Effets systémique à seuil</u> : Peau	Effets systémique à seuil : TDI = 4,5.10 ⁻⁴ mg/kg/j (FoBiG 2009)
	Ingestion	<u>Effets cancérigènes sans seuil</u> : Cancer de la peau	Effets cancérigènes sans seuil : ERU ₀ = 1,5 (mg/kg/j) ⁻¹ (US-EPA 1998)
		<u>Effets systémique à seuil</u> : Système gastrointestinal, système	Effets systémique à seuil : REL = 0,02 mg/m³ (OEHHA 2001)
Sélénium CAS :	Inhalation	cardiovasculaire, système nerveux <u>Effets cancérigènes sans seuil</u> : Pas d'information	<u>Effets cancérigènes sans seuil</u> : Pas de valeur
7782-49-2		Effets systémique à seuil : Intoxication	Effets systémique à seuil : RfD = 5.10 ⁻³ mg/kg/j (US-EPA 1991)
	Ingestion	<u>Effets cancérigènes sans seuil</u> : Pas d'information	Effets cancérigènes sans seuil : Pas de valeur
	Televisia.	Effets systémique à seuil : Systèmes rénal, nerveux et sanguin	Effets systémique à seuil : VTR = 9.10 ⁻⁴ mg/m³ (ANSES 2013)
Dlamb	Inhalation	<u>Effets cancérigènes sans seuil</u> : Cancer des reins	Effets cancérigènes sans seuil : ERUi = 1,2.10 ⁻⁵ (μg/m³) ⁻¹ (ΟΕΗΗΑ 2011)
Plomb CAS : 7439-92-1		Effets systémique à seuil : Systèmes rénal, nerveux et sanguin	Effets systémique à seuil : VTR = 6,3.10 ⁻⁴ mg/kg/j (ANSES 2013)
/ 1 33-32-1	Ingestion	<u>Effets cancérigènes sans seuil</u> : Cancer des reins	Effets cancérigènes sans seuil : ERU ₀ = 8,5.10 ⁻³ (mg/kg/j) ⁻¹ (OEHHA 2011)

Substance	Voie d'exposition	Organes cibles	Valeur Toxicologique de Référence retenue
Antimoine CAS: 7440-36-0	Ingestion	Effets systémique à seuil : Poids Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : TDI = 6.10 ⁻³ mg/kg/j (OMS 2003) Effets cancérigènes sans seuil : Pas de valeur
Chrome III	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : VTR = 2.10 ⁻³ mg/m³ (INERIS 2017) Effets cancérigènes sans seuil : Pas de valeur
CAS : 7440-47-3	Ingestion	Effets systémique à seuil : Non précisé Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : RfD = 1,5 mg/kg/j (US-EPA 1998) Effets cancérigènes sans seuil : Pas de valeur
Chrome VI	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Cancer pulmonaire	Effets systémique à seuil: TC = 3.10 ⁻⁵ mg/m³ (OMS CICAD 2013) Effets cancérigènes sans seuil: ERUi = 6.10 ⁻³ (μg/m³) ⁻¹ (IPCS 2013)
CAS : 18540-29-9	Ingestion	Effets systémique à seuil : Système gastrointestinal Effets cancérigènes sans seuil : Cancer de l'estomac	Effets systémique à seuil : MLR = 9.10 ⁻⁴ mg/kg/j (ATSDR 2012) Effets cancérigènes sans seuil : ERU ₀ = 5.10 ⁻¹ (mg/kg/j) ⁻¹ (OEHHA 2011)
Cobalt	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : TC = 1.10 ⁻⁴ mg/m³ (OMS CICAD 2006) Effets cancérigènes sans seuil : Pas de valeur
CAS : 7440-48-4	Ingestion	Effets systémique à seuil : Coeur Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : VTR = 1,5.10 ⁻³ mg/kg/j (AFSSA 2010) Effets cancérigènes sans seuil : Pas de valeur
Manganèse	Inhalation	Effets systémique à seuil : Système nerveux Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : MRLch = 3.10 ⁻⁴ mg/m³ (ATSDR 2012) Effets cancérigènes sans seuil : Pas de valeur
CAS : 7439-96-5	Ingestion	Effets systémique à seuil : Système nerveux central Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : RfD = 1,4.10 ⁻¹ mg/kg/j (US-EPA 1996) Effets cancérigènes sans seuil : Pas de valeur
Nickel CAS : 7440-02-0	Inhalation	Effets systémique à seuil : Système respiratoire Effets cancérigènes sans seuil : Cancer des poumons	Effets systémique à seuil : VTR = 2,3.10 ⁻⁴ mg/m³ (TCEQ 2011) Effets cancérigènes sans seuil : ERUi = 1,7.10 ⁻⁴ (µg/m³) ⁻¹ (TCEQ 2011)
	Ingestion	Effets systémique à seuil : Effets sur la reproduction Effets cancérigènes sans seuil : Pas d'information	Effets systémique à seuil : TDI = 2,8.10 ⁻³ mg/kg/j (EFSA 2015) Effets cancérigènes sans seuil : Pas de valeur

Remarques:

✓ pour les effets cancérigènes non génotoxiques, c'est la VTR à seuil qui sera privilégiée, conformément à la note du 31 octobre 2014. Dans le cas du benzo(a)pyrène : les Valeurs Toxicologiques de Référence sélectionnées pour le benzo(a)pyrène correspondent aux recommandations formulées par l'INERIS dans le rapport final « Hydrocarbures Aromatiques Polycycliques (HAPs) ».

✓ En l'absence de Valeurs Toxicologiques de Référence reconnues, les valeurs réglementaires de la qualité de l'air issue de l'article R. 221-1 du Code de l'environnement seront retenues prioritairement aux Valeurs Guides définies par l'OMS pour le Dioxyde de soufre, les Oxydes d'azote, le Monoxyde de carbone et les Poussières comme valeur de comparaison.

- ✓ Les VTR sous forme d'avant-projet (draft) ou de document provisoire ne sont pas retenues pour la quantification des risques.
- ✓ Les VTR recommandées par l'INERIS et les VTR non provisoires ont été privilégiées.
- ✓ Pour le mercure, sans connaître la forme du composé dans les rejets, les formes les plus toxiques ont été privilégiées en prenant les VTR :
 - du mercure élémentaire pour les expositions par inhalation,
 - du mercure inorganique pour les expositions par ingestion.
- ✓ Les formes de métaux inorganiques et particulaires ont été sélectionnées en priorité.

2.2.3 FLUX

Le flux annuel est également considéré dans la méthodologie de sélection des substances.

2.2.4 COMPORTEMENT DE LA SUBSTANCE DANS L'ENVIRONNEMENT

Il est caractérisé par son facteur de bioconcentration (BCF) dans les organismes vivants aquatiques ou terrestres. Il permet de connaître le comportement de la substance dans le compartiment environnemental (plante, animal terrestre ou aquatique) susceptible d'être impacté par les rejets du site.

Toutes les substances pour lesquelles il existe une telle valeur seront considérées comme susceptibles de s'accumuler. Selon le règlement REACh (annexe XIII), une substance n'est pas considérée comme bioaccumulable si le BCF est inférieur à 2 000 ou si le log décimal de son coefficient de partage octanol/eau est inférieur à 3.

Le comportement de la substance dans l'environnement permet d'orienter le choix de la sélection.

2.2.5 PRESENTATION DES TRACEURS RETENUS

Les critères définis ci-avant ainsi que le choix résultant de leur prise en compte sont reportés dans le tableau ci-dessous.

Substance émise	Formule chimique	N°CAS	Classement cancérigène O/N	Existence d'une VTR sans seuil O/N	Existence d'une VTR à seuil O/N	Existence d'une valeur guide O/N	Flux annuel (t/an)	Comportement dans l'envt (valeur ?) O/N	Sélection Traceur de risque O/N	Sélection Traceur d'émission O/N
Poussières	PM _{2,5}	-	N	N	N	0	1,04E+00	N	N	0
Monoxyde de carbone	СО	630-08-0	0	N	N	0	1,04E+01	N	N	o
Dioxyde de soufre	SO ₂	7446-09-5	0	N	N	0	6,24E+00	N	N	0
Oxydes d'azote	NOx	10102-44-0 10102-43-9	N	N	N	0	7,28E+00	N	N	o
Acétaldéhyde	CH₃CHO	75-07-0	0	0	0	N	8,69E-02	N	0	N
Acroléine	СзН4О	107-02-8	0	N	0	N	1,83E-02	N	0	N
Benzène	C ₆ H ₆	71-43-2	0	0	0	N	5,26E-02	N	0	N
Formaldéhyde	CH ₂ O	50-00-0	0	0	0	N	8,24E-02	N	0	N
Phénol	C ₆ H ₆ O	108-95-2	0	N	0	N	8,69E-02	N	0	N
Naphtalène	C ₁₀ H ₈	91-20-3	-	-	0	N	4.465.03	0	0	N
Benzo-a-pyrène	C ₂₀ H ₁₂	50-32-8	0	0	-	N	4,16E-03	0	0	N
Cadmium	Cd	7440-43-9	0	0	0	N	6,24E-04	0	0	N
Mercure	Hg	7439-97-6	0	N	0	N	3,12E-04	0	0	N
Arsenic	As	7440-38-2	0	0	0	N	5,20E-03	0	0	N
Sélénium	Se	7782-49-2	N	N	0	N	8,32E-03	0	0	N
Plomb	Pb	7439-92-1	0	0	0	N	2,08E-02	0	0	N
Antimoine	Sb	7440-36-0	N	N	0	N	1,04E-02	0	0	N
Chrome III	CrIII	7440-47-3	0	N	0	N	3,57E-02	0	0	N
Chrome VI	CrVI	18540-29-9	0	0	0	N	7,28E-04	0	0	N
Cobalt	Со	7440-48-4	0	N	0	N	2,08E-02	0	0	N
Manganèse	Mn	7439-96-5	0	N	0	N	1,56E-02	0	0	N
Nickel	Ni	7440-02-0	0	0	0	N	1,04E-02	0	0	N

O/N: Oui/Non ND: Non Déterminé KALIES - KAR 19.43

La mise en œuvre de cette méthodologie permet de retenir les substances présentant le risque le plus élevé pour la santé humaine parmi l'ensemble des substances rejetées. Ces substances sont les suivantes :

	Voie d'exposition				
Substance	Inhalation	Ingestion de sols, végétaux et animaux			
Acétaldéhyde	X	-			
Acroléine	Х	-			
Benzène	Х	-			
Formaldéhyde	Х	-			
Phénol	Х	-			
Naphtalène	Х	X			
Benzo-a-pyrène	Х	X			
Cadmium	Х	X			
Mercure	Х	X			
Arsenic	Х	X			
Sélénium	Х	X			
Plomb	Х	X			
Antimoine	Х	X			
Chrome III	Х	X			
Chrome VI	Х	X			
Cobalt	Х	Х			
Manganèse	Х	X			
Nickel	Х	X			

En plus de ces traceurs de risque sanitaire, les traceurs d'émission suivants ont été retenus :

Cubatanas	Milieu d'exposition		
Substance	Air		
PM	X		
CO	X		
S02	X		
NOx	X		

3 EVALUATION DES ENJEUX ET DES VOIES D'EXPOSITION

3.1 DELIMITATION DE LA ZONE D'ETUDE

La zone d'étude correspond à 5 km autour du projet.

3.2 CONTEXTE ENVIRONNEMENTAL ET USAGES

3.2.1 LOCALISATION DU PROJET

La future centrale d'enrobage sera implantée au sein du périmètre exploité de la carrière CRB, en partie sud, sur une emprise d'environ 25 000 m².

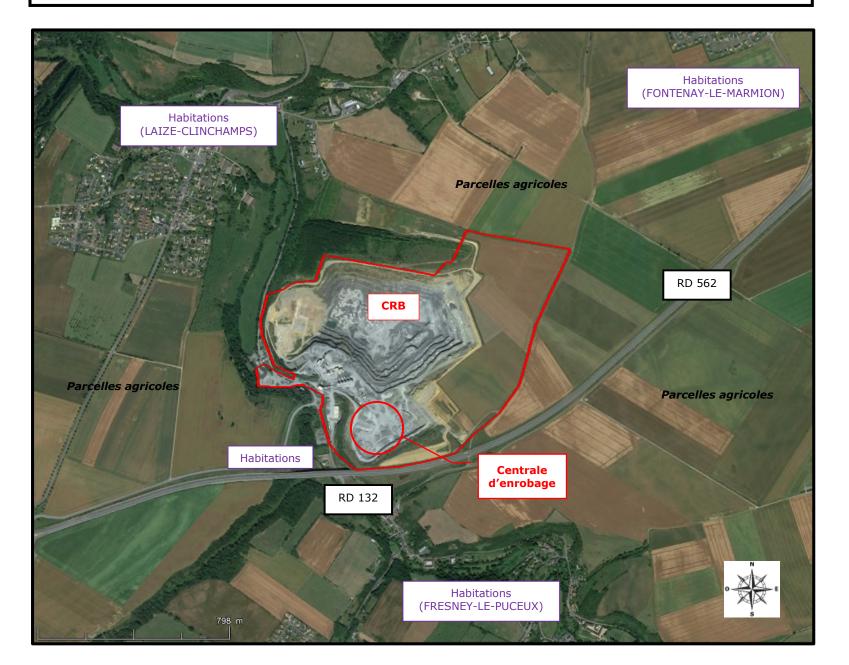
La société CRB est situé en majorité sur la commune de FRESNEY-LE-PUCEUX, et, dans une moindre mesure, sur les communes de FONTENAY-LE-MARMION et LAIZE-CLINCHAMPS. Sa superficie globale est de 807 267 m².

Les coordonnées des installations étudiées sont les suivantes (UTM 30 U, centre du projet) :

- \checkmark X = 692,017 km,
- \checkmark Y = 5 438,940 km.

La vue aérienne en page suivante permet de localiser la carrière, l'emprise du projet et leur environnement proche.

La zone d'implantation de la centrale d'enrobage sera localisée au sein du périmètre d'exploitation de CRB, sur une plateforme déjà utilisée pour le transit de matériaux inertes. Son environnement sera le suivant :


- √ au nord, des installations de la carrière CRB et notamment la zone actuelle d'extraction,
- √ à l'ouest, des installations de la carrière CRB et la route départementale RD 132,
- √ au sud, des parcelles agricoles (périmètre CRB) puis la route départementale RD 562,
- ✓ à l'est, des installations de la carrière CRB puis des parcelles agricoles (périmètre CRB).

3.2.2 DONNEES DE L'ETAT INITIAL

Un état initial complet a été réalisé dans le DDAE de 2018.

Les principales informations sont également disponibles dans la demande de cas par cas. Le lecteur pourra utilement s'y référer.

Vue aérienne et environnement immédiat

3.2.3 USAGES DE LA ZONE D'ETUDE

La figure en page suivante permet de visualiser l'occupation des sols au niveau de la zone d'étude.

Il convient de noter :

- \checkmark un usage important des sols en agriculture,
- √ la présence d'habitations plus ou moins dispersées,
- √ l'absence d'activité industrielles, excepté la carrière CRB,
- \checkmark la présence d'infrastructures de transport routières.

Occupation des sols (Corine Land Cover 2018)

3.3 CARACTERISATION DES POPULATIONS

Les lieux où une exposition de la population aux rejets du projet est envisageable peuvent être les suivants :

- ♥ les habitats (actuels et futurs),
- les établissements recevant du public, dont les établissements accueillant des personnes sensibles : établissements scolaires, crèches, maisons de retraite, établissements de santé, centres sportifs.

3.3.1 DESCRIPTION GENERALE DE LA POPULATION DE LA ZONE D'ETUDE

Les zones habitées les plus proches sont les suivantes (distances par rapport au projet) :

- ✓ 100 m à l'ouest (lieu-dit le Moulin Paris), commune de FRESNEY-LE-PUCEUX (habitation appartenant à CRB),
- ✓ 250 m au sud, commune de FRESNEY-LE-PUCEUX,
- √ 900 m au nord-ouest, commune de LAIZE-CLINCHAMPS,
- ✓ 2 km au nord-est, commune de FONTENAY-LE-MARMION.

Les données du recensement de 2016 (INSEE) des différentes communes de la zone d'étude sont présentées dans le tableau ci-après.

Commune	Distance entre le projet et le centre-ville	Population totale
FRESNEY-LE-PUCEUX	1,1 km au sud	823
LAIZE-CLINCHAMPS	1,1 km au nord-ouest	1 995
BOULON	2,2 km au sud-ouest	660
FONTENAY-LE-MARMION	2,3 km au nord-est	1 937

A noter que pour ces communes l'indicateur de population par âge n'est pas disponible.

3.3.2 PROJETS IMMOBILIERS - ZONES A CONSTRUIRE

Au vu des documents d'urbanisme des communes situées à proximité du projet, les zones à vocation d'habitation sont situées au niveau des habitations actuelles et notamment au niveau des bourgs des communes.

Ainsi, aucune nouvelle zone d'habitation ne devrait être développée à proximité du projet.

Pour rappel, la nouvelle centrale d'enrobage sera implantée au sein de la carrière CRB déjà en activité. Ainsi, aucune habitation ne pourra être construite à proximité immédiate des installations projetées.

3.3.3 ETABLISSEMENTS RECEVANT DU PUBLIC

Les établissements recevant du public (hors établissements sensibles listés dans le paragraphe suivant) sont concentrés au niveau des bourgs des communes et sont donc situés à plus de 500 m du projet.

3.3.4 RECENSEMENT DES POPULATIONS SENSIBLES

Les communes concernées comprennent également des populations dites sensibles, à savoir :

- √ les personnes malades,
- √ les femmes enceintes et les nouveaux nés,
- √ les personnes handicapées (enfants et adultes),
- √ les personnes âgées,
- √ les enfants préscolaires,
- ✓ les enfants et adolescents.

La carte ci-après localise les lieux d'exposition collective dans la zone d'étude.

Cartographie des sources, populations et usages

3.4 AUTRES ETUDES SANITAIRES D'IMPACT

Aucune étude sanitaire d'impact réalisée pour un projet situé à proximité n'est disponible. Il convient de précisé que, en ce qui concerne l'impact sanitaire actuel de la carrière CRB, le DDAE de 2018 avait conclu à un impact nul.

En l'absence de données précises sur la zone d'étude, les données sanitaires présentées correspondent à l'échelle de la région Normandie.

Impact sanitaire de la pollution atmosphérique en Normandie

Une étude sur l'impact de l'exposition chronique à la pollution de l'air sur la mortalité a été effectuée sur la totalité du territoire français par SANTE PUBLIQUE FRANCE en juin 2016. Les informations cidessous sont tirées de la fiche de synthèse consacrée à la région Normandie.

En France, les communes les moins polluées sont situées dans les massifs montagneux, en altitude. Dans un scénario sans pollution atmosphérique où la qualité de l'air en France continentale serait identique à celle de ces communes les moins polluées (moyenne annuelle de concentration en $PM_{2.5}$ de 5 μ g/m³), plus de 48 000 décès seraient évités chaque année dans le pays, dont près de 2 600 en Normandie. Ceci représenterait une baisse de 9 % de la mortalité en France et dans la région. Les personnes de 30 ans gagneraient alors en moyenne 9 mois d'espérance de vie.

L'atteinte en tout point du territoire français d'une qualité de l'air équivalente à celle observée sur les sommets montagneux semble peu réaliste. Toutefois, si toutes les communes atteignaient les concentrations les plus faibles observées dans les communes équivalentes (en matière de type d'urbanisation et de taille), 34 000 décès seraient évités chaque année en France, et les personnes de 30 ans gagneraient, toujours en moyenne, 9 mois d'espérance de vie. En Normandie, 2 000 décès seraient évités chaque année. Ceci représenterait un gain moyen de 7 à 11 mois d'espérance de vie à 30 ans selon la typologie de la commune (rurale, moyenne, grande). Ces bénéfices ne seraient pas observés uniquement dans les grandes villes, mais également dans les villes de taille moyenne et dans les communes rurales.

Si l'objectif de respecter partout la valeur guide de $PM_{2,5}$ recommandée par l'OMS pour protéger la santé (10 μ g/m³) était atteint, alors 17 000 décès seraient évités par an en France, dont environ 600 en Normandie. La moitié de ces bénéfices s'observeraient dans les plus grandes villes de la région.

Enfin, si les seuils pour les $PM_{2,5}$ proposés par le Grenelle de l'environnement (15 μ g/m³) ou celui de la valeur cible pour 2020 de la directive européenne (20 μ g/m³) étaient respectés, alors le bénéfice sanitaire serait faible en France et nul en Normandie.

Plan Régional Santé Environnement Normandie

Le PRSE 3 2017-2021 de la région Normandie a été approuvé en 2018.

Concernant la qualité de l'air extérieur, le plan fait le constat suivant :

« Les teneurs en particules en suspension dépassent les recommandations de l'OMS en Normandie, ce qui atteste d'une pollution chronique largement répandue sur le territoire. Les sources de pollution particulaire (chauffage, activité agricole, transport et industrie) et mécanismes de formation sont variés, avec des composantes saisonnières marquées. En Normandie, 2600 décès seraient attribuables chaque année à la pollution de l'air par les particules. Le dioxyde d'azote est un polluant qui dépasse encore ponctuellement les valeurs limites européennes, en situation de proximité du trafic, dans l'agglomération de ROUEN principalement. Au-delà de cette pollution chronique, on observe chaque année des épisodes de pollution particulaire, principalement l'hiver et au printemps, ainsi que, dans une moindre mesure, à l'ozone l'été.

Les pesticides sont retrouvés dans l'air aussi bien en milieu urbain, péri-urbain qu'en campagne. 16% (soit 1 454) des établissements normands accueillant des personnes vulnérables (jeunes enfants, établissements sanitaires et médico-sociaux) sont situés à proximité de zones d'épandage de pesticides.

Les principaux pollens allergisants en Normandie sont les graminées et le bouleau, à l'origine de pics d'allergie au printemps. »

Le plan précise également, concernant l'état de santé des normands en lien avec des facteurs environnementaux :

- « Globalement la région présente un état de santé dégradé : 2ème région la plus touchée par une surmortalité prématurée (avant 65 ans) liée principalement aux décès par cancers et maladies de l'appareil circulatoire. »
 - « Cancers : En l'état actuel des connaissances, il est difficile d'estimer la part des cancers liés aux expositions environnementales : de 12 % à 29 % pour certains cancers selon l'OMS. Au regard des facteurs environnementaux, six localisations sont considérées prioritaires : poumons, tumeurs cérébrales, lymphome non hodgkinien, mésothéliome pleural, leucémies aigües et cancer de la peau. La Normandie présente une situation plus dégradée qu'au niveau national pour les cancers bronches-poumon, les cancers de la plèvre liés à l'amiante et ceux de la peau liés au rayons ultraviolets.
 - Pathologies respiratoires : La prévalence de l'asthme est estimée entre 7 à 10 % en France et en augmentation. La région présente un taux d'hospitalisation pour asthme plus élevé que la moyenne nationale chez les jeunes de moins de 15 ans.
 - Pathologies cardiovasculaires et facteurs de risques : La Normandie est la 3^{ème} région la plus touchée pour la mortalité par cardiopathies ischémiques et le taux d'obésité est en progression avec près de 20 % des Eurois et Seino-marins considérés comme obèses.
 - Facteurs environnementaux spécifiques : Le nombre d'intoxications au monoxyde de carbone est en baisse ces dernières années de même la prévalence du saturnisme infantile diminue

depuis 2006. Il n'y a pas de constat de situations épidémiques liées à la contamination de l'eau par des micro-organismes depuis 2006. Près de 8 % des collégiens de 5^{ème} présentent des troubles auditifs selon une étude menée en Seine-Maritime et dans l'Eure. »

Indices comparatifs de mortalité

La fédération nationale des observatoires régionaux de santé présente, pour la région Normandie et le département du Calvados, les indices comparatifs de mortalités (ICM) suivants (année 2013 - 2015) :

	Normandie	Calvados
ICM global	106+	102+
ICM : maladies de l'appareil digestif	114+	109+
ICM : maladies de l'appareil circulatoire	110+	106+
ICM : maladies de l'appareil respiratoire	99 ^{ns}	103 ^{ns}

L'ICM correspond au nombre de décès observé par rapport au nombre de décès qui serait obtenu si le taux de mortalité par âge révolu était identique au taux national (ICM France entière = 100). + Valeur significativement supérieure à la valeur de référence ns : pas de différence significative avec la valeur de référence www.scoresante.org

Les Indices Comparatifs de Mortalité présentés indiquent des taux de mortalités un peu plus importants en Normandie et dans le Calvados par rapport à la moyenne nationale pour les maladies considérées.

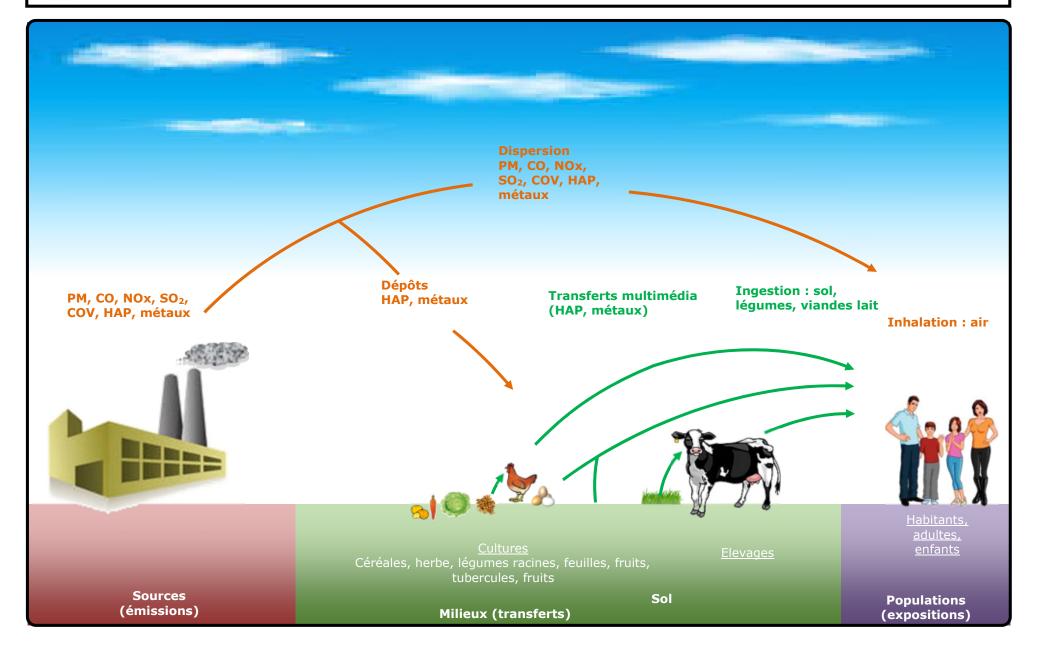
3.5 SCHEMA CONCEPTUEL

<u>Définition</u>: un site présente un risque en termes d'effets sanitaires, seulement si les trois éléments suivants sont présents de manière concomitante:

- une **source** de polluants mobilisables présentant des caractéristiques dangereuses ;
- des voies de **vecteur** de transfert : il s'agit des différents milieux (sols, eaux superficielles et souterraines, cultures destinées à la consommation humaine ou animale ...) qui, au contact de la source de pollution, sont devenus à leur tour des éléments pollués et donc des sources de pollution secondaires.
 - Notons que dans certains cas, ces milieux ont pu propager la pollution sans pour autant rester pollués ;
- la présence de **cibles** susceptibles d'être atteintes par les pollutions. Ces cibles potentielles concernant la population riveraine par contact direct (inhalation) ou indirect (ingestion) tels que les consommateurs de produits potagers dont les jardins sont situés dans la zone d'étude, les consommateurs d'œufs ou animaux élevés sur la zone d'étude et les pêcheurs.

L'identification des sources de pollution potentiellement dangereuses, des vecteurs et des cibles, réalisée sur la base des émissions et traitements présentés précédemment ont permis de montrer que la combinaison source / vecteur / cible n'est identifiée que pour les émissions atmosphériques. Les agents retenus susceptibles d'être émis dans l'air sont des composés gazeux et particulaires et pourront impacter les milieux Air et Sol.

La voie d'exposition par contact cutané n'est pas prise en compte.


Les substances retenues susceptibles d'être émises dans l'air sont des composés gazeux et particulaires issus de l'activité du site.

Au regard des lieux et des milieux d'exposition de la population, celle-ci peut être exposée aux rejets de l'installation :

- soit de façon directe par inhalation de substances inhalables (gazeuses ou particulaires) qui se dispersent dans l'air ambiant autour de l'installation,
- soit de façon indirecte par ingestion de substances particulaires par l'intermédiaire du sol et des denrées alimentaires directement contaminées par les dépôts secs et humides. Cette exposition considère une contamination du sol et de la chaîne alimentaire sur les jardins et les cultures environnants (les fruits et les légumes sont les aliments qui sont les plus susceptibles d'être consommés à proximité même de leur lieu de production selon une enquête de l'INSEE citée par la Société Française de Santé Publique).

Le scénario conceptuel d'exposition des populations adapté au site est présenté à la page suivante.

Schéma conceptuel

4 EVALUATION PROSPECTIVE DES RISQUES SANITAIRES

4.1 IDENTIFICATION DES DANGERS

4.1.1 EFFETS SUR LA SANTE

Dioxyde de soufre : l'exposition prolongée (pollution atmosphérique notamment) augmente l'incidence de pharyngite et de bronchite chronique. Celle-ci peut s'accompagner d'emphysème et d'une altération de la fonction pulmonaire en cas d'exposition importante prolongée. Il peut engendrer ou exacerber des affections respiratoires (toux chroniques) et entraîner une augmentation du taux de mortalité par maladie respiratoire ou cardiovasculaire.

Oxydes d'azote : les études ont montré chez l'enfant un allongement de la durée des symptômes respiratoires associé à l'augmentation des moyennes annuelles d'exposition au dioxyde d'azote, une augmentation des traitements en milieu hospitalier pour des pathologies respiratoires et une augmentations des traitements en milieu hospitalier pour des pathologies de l'appareil respiratoire inférieur lors d'expositions vie entière.

Poussières : dans les poussières totales en suspension se distinguent :

- les poussières ou particules sédimentables qui ont un diamètre important (compris entre 10 et 100 microns);
- les poussières fines, parfois appelées aussi alvéolaires car elles pénètrent dans les enveloppes pulmonaires, et dont le diamètre est inférieur à 10 microns. On fait référence à 2 classes de particules fines :
 - √ les PM₁₀ (diamètres inférieurs à 10 μm),
 - ✓ les $PM_{2,5}$ (ou très fines particules dont les diamètres sont inférieurs à 2,5 µm).

Selon leur taille, elles pénètrent plus ou moins profondément dans le système respiratoire. Elles sont ainsi susceptibles de pénétrer dans les voies pulmonaires jusqu'aux alvéoles, de s'y déposer et d'y rester durablement en créant une surcharge pulmonaire néfaste pour l'organisme.

Monoxyde de carbone : A fortes teneurs, le monoxyde de carbone peut provoquer des intoxications.

COV : d'un point de vue sur la santé, les effets des COV sont multiples. Ils peuvent causer différents troubles soit par inhalation, soit par contact avec la peau. Ils peuvent également entraîner des troubles cardiaques, digestifs, rénaux et nerveux. Enfin certains COV comme le benzène sont cancérogènes, tératogènes (malformations) et/ou mutagènes.

HAP : les HAP exercent notamment des effets cancérigènes, tératogènes, immunosuppresseurs et cardiovasculaires. Associés aux poussières, ils peuvent pénétrer dans les alvéoles pulmonaires.

Antimoine: l'exposition professionnelle par inhalation à des composés de l'antimoine a entraîné des effets respiratoires incluant bronchite chronique, emphysème chronique... Dans des études à long terme, les animaux qui ont respiré les niveaux très bas d'antimoine ont subi une irritation de l'œil, des dommages aux poumons et des problèmes de cœur.

Arsenic : l'intensité des troubles sera variable en fonction du composé incriminé et de sa nature. L'arsenic agit sur de multiples organes. En milieu industriel, on constate :

- une atteinte cutanée avant tout de mécanisme irritatif (dermites, plaies),
- une atteinte des muqueuses (gingivite, laryngite...),
- wune chute des cheveux,
- une apparition de bandes blanches et grises transversales des ongles,
- une polynévrite sensitivomotrice débutant aux membres inférieurs,
- ♥ une atteinte sanguine : anémie...
- we moins fréquemment, des atteintes digestives, hépatique, rénale et des troubles cardiovasculaires.

Cadmium: par voie orale, les effets rénaux se manifestent les premiers, pour des doses très faibles. Le cadmium agit aussi sur la formation des os. Des effets cardiovasculaires, hématologiques, hépatiques, immunologiques, endocriniens ou neurologiques sont aussi rapportés. Par voie respiratoire, l'appareil respiratoire est l'organe cible, principalement au niveau des poumons.

Chrome : le tractus respiratoire est l'organe cible des effets lors de l'exposition par inhalation des dérivés du chrome III et du chrome VI. Des atteintes gastro-intestinales (inflammation du tube digestif puis nécrose) sont mises en avant pour une exposition au chrome VI par ingestion.

Cobalt : les intoxications publiées chez l'homme concernent principalement des expositions par inhalation. Des manifestations respiratoires sont en premier lieu rapportées, mais également des effets cardiaques, des effets sur la thyroïde et des effets cutanés (dermite allergique).

Manganèse : les poussières ou les fumées d'oxydes de manganèse provoquent une irritation intense. Les fumées peuvent également entraîner l'apparition de frissons, de fièvre, de sudation, de nausées et de toux. Aucune donnée n'est disponible quant à la toxicité par ingestion chez l'homme.

Mercure : l'exposition chronique au mercure entraîne des troubles neurologiques progressifs aboutissant à une encéphalopathie (troubles de l'humeur et de la motricité...), une neuropathie périphérique et une possible atteinte rénale.

Nickel : le nickel est connu depuis longtemps comme l'allergène le plus courant pour la peau. Des effets chroniques respiratoires du nickel ont également été mis en avant : certaines études indiquent un excès de bronchites chroniques ou de perturbations des fonctions respiratoires, bien que les salariés fussent toujours exposés à plusieurs polluants.

Plomb : l'intoxication au plomb peut survenir après l'inhalation ou l'ingestion. Plusieurs effets peuvent être observés :

- hématologie, dont l'effet principal est une anémie,
- des effets sur l'appareil digestif (douleurs abdominales intenses) pouvant conduire parfois aux « coliques de plomb »,
- 🔖 des effets sur le système nerveux,
- ♥ une atteinte rénale,
- ♥ une hypertension artérielle,
- une atteinte osseuse.

Sélénium: les cas d'intoxication par inhalation associent des symptômes non spécifiques (irritabilité, perte de poids, tremblements...) et très fréquemment des troubles gastro-intestinaux avec nausées, vomissements, diarrhées... Des signes d'irritation cutanée, nasale ou oculaire sont souvent présents.

4.1.2 DEVENIR DANS L'ENVIRONNEMENT DES SUBSTANCES RETENUES

A partir de la source canalisée, les substances émises en fonctionnement normal vont se disperser dans l'atmosphère.

Très réactifs dans l'atmosphère, les COV contribuent à la pollution photochimique. Celle-ci est caractérisée par la présence de composés issus de réactions chimiques entre les oxydes d'azote, les composés organiques volatils et le monoxyde de carbone sous l'effet du rayonnement solaire. Il est important de noter que la part de COV dégradée dans l'atmosphère n'est pas considérée au cours de cette étude. Ainsi, les COV sont supposés comme persistants dans l'atmosphère.

Dans l'atmosphère, le dioxyde de soufre se transforme principalement en acide sulfurique (H_2SO_4) . Cet acide contribue, en association avec d'autres polluants, à l'acidification et à l'appauvrissement des milieux naturels. Il participe aussi à la détérioration des matériaux utilisés dans la construction des bâtiments (pierre, métaux).

Les NOx sont rapidement oxydés en nitrates dans l'atmosphère. En se solubilisant dans les gouttes d'eau des nuages, ces composés peuvent être à l'origine de la formation des pluies acides. Les oxydes d'azote peuvent réagir avec des composés hydrocarbonés dans la troposphère et conduire à la formation d'ozone par voie photochimique. Le dioxyde d'azote se transforme dans l'atmosphère en acide nitrique (HNO₃).

Les composés particulaires comme les HAP ou les métaux sont fixés à la surface des poussières et retombent vraisemblablement au sol sans transformation particulière. En fonction de leur réactivité et de leur mobilité, ils peuvent ensuite migrer dans le sol. Ces substances contaminent donc les sols et les aliments. Ils s'accumulent dans les organismes vivants et perturbent les équilibres et mécanismes biologiques.

Les particules en suspension peuvent réduire la visibilité et influencer le climat en absorbant et en diffusant la lumière. Les particules, en se déposant, contribuent à la dégradation physique et chimique des matériaux. Les particules se déposent rapidement sous l'effet de leurs poids. Les particules de diamètre inférieur ou égal à 10 µm, appelées PM10, peuvent rester en suspension dans l'air pendant des jours, voire des semaines. De nombreuses substances toxiques comme les métaux lourds ou les hydrocarbures se retrouvent généralement adsorbées aux particules.

Tout comme les oxydes d'azote et les Composés Organiques Volatils, le monoxyde de carbone intervient dans la formation de l'ozone troposphérique. Dans l'atmosphère, il peut également se transformer en dioxyde de carbone (CO_2) et contribuer à l'effet de serre.

Tous ces produits subissent en outre une dilution importante entre le point de rejet de la cheminée et les populations susceptibles d'être exposées.

4.2 EVALUATION DES RELATIONS DOSE-REPONSE

La méthodologie de sélection des VTR, la présentation des VTR retenues et les effets des substances sont présentés au § 2.2 de la présente étude.

4.3 EVALUATION DE L'EXPOSITION

4.3.1 ESTIMATION DES CONCENTRATIONS DANS LES MILIEUX D'EXPOSITION

A) DANS L'AIR

L'estimation des concentrations dans l'air est effectuée grâce à la réalisation d'une modélisation de la dispersion atmosphérique des rejets dans l'air du site.

i) Domaine d'étude ou zone d'influence du site

Le domaine d'étude est un domaine de 25 km² (5 km x 5 km) centré sur l'installation. Ce carré permet la restitution des retombées de l'installation. Concrètement, ce domaine permet d'identifier les zones impactées par les rejets de l'installation ainsi que celles audelà desquelles l'impact des retombées atmosphériques est négligeable.

ii) Principe et validation du code de dispersion utilisé

La simulation de l'impact à long terme de l'installation a été effectuée à l'aide d'un modèle gaussien statistique cartésien. Il s'agit du logiciel ARIA IMPACT développé par la société ARIA TECHNOLOGIES.

Le principe du logiciel consiste à simuler plusieurs années de fonctionnement en utilisant des chroniques météorologiques réelles représentatives de la zone concernée. A partir de cette simulation, peuvent être calculés :

- 🔖 les concentrations de polluants au niveau du sol,
- 🤟 les dépôts secs au sol de particules,
- 🔖 les dépôts humides au sol de particules.

Le traitement statistique des résultats obtenus permet de calculer des valeurs de concentration moyenne.

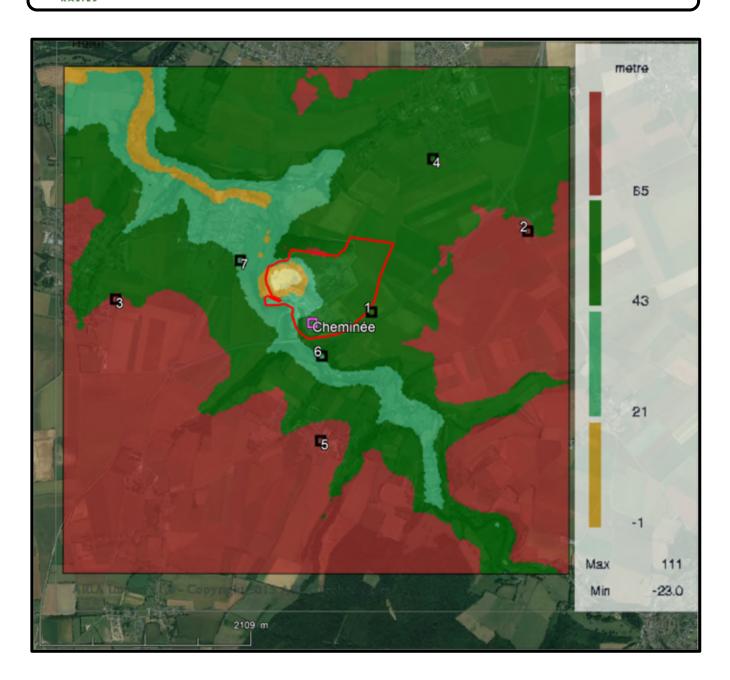
Le logiciel permet de prendre en compte les effluents gazeux qui suivent parfaitement les mouvements de l'atmosphère ainsi que les polluants particulaires qui sont sensibles aux effets de la gravité. Avec une précision satisfaisante eu égard aux différentes incertitudes, il permet en outre une prise en compte simplifiée de l'influence du relief, mais ne permet pas d'intégrer la présence éventuelle d'obstacles significatifs par rapport à la hauteur de la cheminée et du panache.

Les simplifications imposées pour pouvoir utiliser une formulation mathématique rapide conduisent généralement à l'obtention de résultats majorants, particulièrement adaptés à la réalisation d'études d'impact d'installations industrielles.

Le code de calcul utilisé est similaire à celui de nombreux logiciels gaussiens utilisés à l'heure actuelle. Il a reçu l'agrément d'instances nationales telle le CEA (Commissariat à l'Energie Atomique) et internationales telle l'US-EPA (Agence Américaine de Protection Environnementale).

iii) Données d'entrée du modèle

Les paramètres principaux de l'étude de dispersion sont :


- les données topographiques,
- les données météorologiques,
- 🔖 les caractéristiques des espèces émises,
- ♦ les caractéristiques des sources,
- ♥ la définition des récepteurs,
- 🤟 les paramètres de simulation.

Données topographiques : elles sont fournies par C-GIAR SRTM (Consultative Group on International Agricultural Research - Shuttle Radar Topography Mission) sous la forme d'un modèle numérique de terrain, et sont entrées sur toute la zone avec une résolution de 79 m. Les calculs sont effectués sur la zone d'étude maillée avec un pas de 50 m. Les coordonnées en UTM 30 U des sources et des récepteurs considérés sont issues de l'application Google Earth.

Le plan de la page ci-après permet de visualiser les divers éléments composant le domaine de calcul.

KALIÈS

Domaine de calcul et relief

<u>Récepteurs</u>:

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Récepteurs: 7 récepteurs sont considérés dans la présente étude. Ils sont implantés au niveau de la zone de retombées maximales et de zones habitées (le Pont de Fresney, les Cinq Fermes, Clinchamps-sur-Orne, Fontenay le Marmion, FRESNEY-LE-PUCEUX et Laize-la-Ville).

Ils sont localisés sur le domaine d'étude présenté précédemment.

Données météorologiques: elles comprennent les données horaires relatives à la direction et à la vitesse du vent, à la température, aux précipitations et à la nébulosité (ou couverture nuageuse) sur la station de CAEN-CARPIQUET. Toutes ces données ont été acquises sur une durée de 3 ans (années 2016 à 2018), qui correspond à la durée minimale nécessaire à l'obtention d'une représentativité statistique (Conseil Supérieur d'Hygiène Publique de France). Elles ont été fournies et par la National Oceanic and Atmospheric Administration (NOAA) et par la société METEOGROUP sous la forme de fichiers informatiques.

Etant donné la proximité géographique, les données météorologiques de la station de CAEN-CARPIQUET sont représentatives du site.

L'intégration de la totalité de ces données réelles dans le logiciel ARIA IMPACT a permis de calculer pour chacun des cas, la classe de stabilité de Pasquill permettant de rendre compte du caractère neutre, stable ou instable de l'atmosphère.

La classification de l'atmosphère (de la classe A : très instable à la classe F : très stable) est réalisée dans ARIA IMPACT à partir des caractéristiques du vent et des conditions d'ensoleillement tirées de la nébulosité, de la position géographique du site et de l'heure de la journée.

La stabilité de l'atmosphère est une variable qui rend compte de l'état de stratification thermique de l'atmosphère, c'est-à-dire de la façon dont la température évolue en fonction de l'altitude.

C'est une variable très importante pour les phénomènes de dispersion car elle influe fortement sur la hauteur du panache (liée à la vitesse de sortie du gaz de la cheminée et à la différence de température entre les fumées et l'air ambiant) et sur l'étalement latéral et vertical du panache.

La représentation de la rose des vents générale fournie en page suivante permet de constater que les vents les plus fréquents (vents dominants) sont de secteur ouest.

Les vents calmes (vitesse < 1 m/s) sont globalement peu nombreux puisqu'ils ne représentent que 2,8 % des observations.

Le traitement des données météorologiques fournies permet de classer chaque observation relevée dans une des 6 classes de stabilité que comporte la classification de PASQUILL, à savoir :

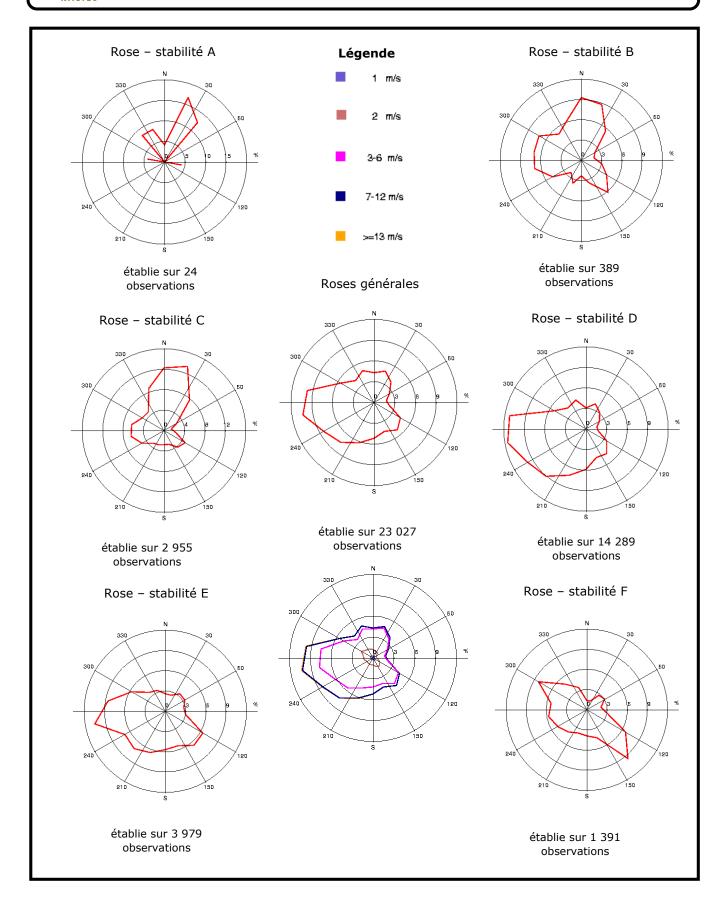
🔖 classe A : atmosphère très fortement instable,

♥ classe B : atmosphère très instable,

🔖 classe C : atmosphère relativement instable,

♥ classe D : atmosphère neutre,

🔖 classe E : atmosphère relativement stable,


🔖 classe F : atmosphère très stable.

La répartition des observations pour chacune des différentes classes est donnée dans le tableau ci-dessous :

Classe de stabilité	Α	В	С	D	Е	F
Fréquence d'apparition	24 cas	389 cas	2 955 cas	14 289 cas	3 979 cas	1 391 cas
	(0,1 %)	(1,7 %)	(12,8 %)	(62,1 %)	(17,3 %)	(6,0 %)

Il apparait que près des deux tiers des situations météorologiques sont associées à une atmosphère neutre (dispersion normale), et près d'un quart sont stables (atmosphères généralement peu dispersives). Seulement 15 % des situations observées correspondent à une atmosphère instable, généralement favorables à la dispersion.

Roses des vents générales et par classe

Caractéristiques des espèces : les caractéristiques paramétrées pour chacune des espèces retenues sont détaillées dans le tableau suivant :

Substance	Phase	Vitesse de dépôt (m/s)	Coefficient de lessivage (s ⁻¹)
PM _{2,5}	Particules	6.00E-03	8.00E-05
СО	Gaz	0	1.00E-05
SO ₂	Gaz	6.00E-03	1.00E-05
NOx	Gaz	0	1.00E-05
Acétaldéhyde	Gaz	0	1.00E-05
Acroléine	Gaz	0	1.00E-05
Benzène	Gaz	0	1.00E-05
Formaldéhyde	Gaz	0	1.00E-05
Phénol	Gaz	0	1.00E-05
HAP	Particules	5.00E-04	1.00E-05
Cadmium	Particules	4.50E-03	7.00E-05
Mercure	Gaz	5.00E-04	3.50E-05
Arsenic	Particules	2.20E-03	5.00E-05
Sélénium	Particules	4.10E-03	5.00E-05
Plomb	Particules	3.00E-03	3.30E-05
Antimoine	Particules	4.10E-03	5.00E-05
Chrome III	Particules	5.00E-03	5.00E-05
Chrome VI	Particules	5.00E-03	5.00E-05
Cobalt	Particules	4.10E-03	5.00E-05
Manganèse	Particules	5.60E-03	5.00E-05
Nickel	Particules	4.50E-03	5.00E-05

Caractéristiques de la source d'émission :

Les caractéristiques de la source canalisée prise en compte sont regroupées dans le tableau suivant :

		es du rejet 30U)	Hauteur de la cheminée	Diamètre	Vitesse d'éjection	Température	
Installation	Х	Υ	Chemmee		u ejection		
	km	km	m	m	m/s	°C	
Cheminée	691,988	5 438,941	19	1,2	8	130	

Paramètres de simulation: Parmi les différents paramètres de modélisation proposés par le logiciel, les deux paramètres les plus importants à fixer sont la formulation des écarts-types de dispersion et la formulation de la surhauteur.

Les écarts-types utilisés dans le calcul gaussien sont des variables qui permettent de rendre compte de l'étalement horizontal et vertical du panache au fur et à mesure que l'on s'éloigne de la source.

Les écarts-types sont liés à la turbulence de l'atmosphère (donc à la classe de stabilité) et à la distance qui sépare le point considéré de la source. La formule retenue dans cette étude est celle PASQUILL-TURNER. C'est une formulation standard couramment employée.

La surhauteur est une autre variable sensible de la dispersion. C'est une grandeur qui permet de prendre en compte l'élévation dynamique du panache avant dispersion. Cette surélévation possède une composante thermique qui résulte de la différence de la température entre les fumées et l'air ambiant ainsi qu'une composante dynamique qui est liée à la vitesse ascensionnelle initiale des fumées à leur sortie de la cheminée. La surhauteur est généralement liée à la vitesse du vent et à la stabilité de l'atmosphère.

Parmi les formulations proposées, la formule de Briggs a été retenue car elle permet de lier la surhauteur à la stabilité atmosphérique. C'est la formule standard recommandée par l'Agence Américaine pour la Protection de l'Environnement (US-EPA).

Parallèlement au choix de ces deux variables prépondérantes que sont la formulation des écarts-types et de la surhauteur, le logiciel permet en outre la prise en compte d'options de modélisation.

Les options qui ont été retenues dans cette étude sont :

- ♥ la prise en compte du relief,
- la génération d'un profil de vent et de température pour recalculer la valeur de ces paramètres à l'altitude du panache à partir des données météorologiques entrées à l'altitude de référence,
- la prise en compte du bâti de la cheminée : il s'agit de l'effet « downwash ». Lorsque les vents sont calmes, la dispersion des émissions subit un rabattement du panache après l'effet de surhauteur induit par la cheminée. Lorsque les vents sont forts, cet effet n'est pas pris en compte. Ce paramètre tend fondamentalement à modifier les modalités de dispersion de la pollution.

iv) Résultats de la dispersion atmosphérique

Les données issues du logiciel correspondent, pour chacun des polluants considérés, à des valeurs de concentrations calculées dans l'air et à des valeurs de dépôts. Les valeurs de concentrations sont exprimées en microgrammes de substance par m^3 d'air ambiant ($\mu g/m^3$) et les valeurs de dépôts en microgrammes de substance par m^2 et par jour ($\mu g/m^2/j$).

Le tableau de la page suivante récapitule les résultats de la simulation de la dispersion atmosphérique pour chacun des polluants retenus au niveau des différents récepteurs choisis ainsi qu'au niveau de la zone de retombées maximales. Cette dernière est localisée à environ 600 m à l'est de la cheminée, en limite d'exploitation de la CRB, sur une parcelle agricole.

Dans le cadre d'une approche conservatrice, les calculs de risque seront réalisés au niveau de la zone de retombées maximales.

Résultats issus du logiciel de dispersion

		Zone de ret	ombées maximales	Les (Cinq Fermes	CI	inchamps	Fontenay	
Par	amètre	СМА	Dépôts totaux	СМА	Dépôts totaux	СМА	Dépôts totaux	СМА	Dépôts totaux
		μg/m3	μg/m2s	μg/m3	μg/m2s	μg/m3	μg/m2s	μg/m3	μg/m2s
	PM	3,52E-02		9,85E-03		3,55E-03		8,00E-03	
	CO	3,52E-01		1,01E-01		3,61E-02		8,16E-02	
	SO2	2,11E-01		5,89E-02		2,12E-02		4,78E-02	
	NOx	2,46E-01		7,10E-02		2,53E-02		5,71E-02	
	Acétaldéhyde	2,94E-03		8,48E-04		3,02E-04		6,82E-04	
	Acroléine	6,20E-04		1,79E-04		6,36E-05		1,44E-04	
COV	Benzène	1,78E-03		5,13E-04		1,83E-04		4,13E-04	
	Formaldéhyde	2,79E-03		8,04E-04		2,86E-04		6,47E-04	
	Phénol	2,94E-03		8,48E-04		3,02E-04		6,82E-04	
HAP	Naphtalène	1,41E-04	8,33E-08	4,05E-05	2,30E-08	1,44E-05	7,82E-09	3,26E-05	1,79E-08
HAF	BaP	1,416-04	0,33L-00	4,03L-03	2,30L-00	1,44L-03	7,02L-09	3,20L-03	1,79L-00
	Cd	2,14E-05	1,10E-07	6,07E-06	3,00E-08	2,20E-06	1,05E-08	4,91E-06	2,37E-08
	Hg	1,06E-05	8,64E-09	3,03E-06	2,23E-09	1,08E-06	6,97E-10	2,44E-06	1,64E-09
	As	1,79E-04	4,72E-07	5,13E-05	1,29E-07	1,85E-05	4,42E-08	4,13E-05	1,01E-07
	Se	2,86E-04	1,30E-06	8,12E-05	3,59E-07	2,93E-05	1,26E-07	6,56E-05	2,85E-07
	Pb	7,14E-04	2,35E-06	2,04E-04	6,57E-07	7,37E-05	2,31E-07	1,65E-04	5,21E-07
Métaux	Sb	3,57E-04	1,62E-06	1,01E-04	4,49E-07	3,67E-05	1,57E-07	8,21E-05	3,56E-07
	Cr III	1,22E-03	6,66E-06	3,46E-04	1,84E-06	1,25E-04	6,51E-07	2,80E-04	1,47E-06
	Cr VI	2,50E-05	1,36E-07	7,07E-06	3,76E-08	2,56E-06	1,33E-08	5,72E-06	3,00E-08
	Со	7,14E-04	3,24E-06	2,03E-04	8,98E-07	7,33E-05	3,15E-07	1,64E-04	7,12E-07
	Mn	5,35E-04	3,23E-06	1,51E-04	8,94E-07	5,47E-05	3,17E-07	1,22E-04	7,14E-07
	Ni	3,57E-04	1,76E-06	1,01E-04	4,88E-07	3,66E-05	1,72E-07	8,19E-05	3,88E-07

		FRESN	EY-LE-PUCEUX	Le Po	nt de Fresney	Lai	ze-la-Ville
Para	amètre	СМА	Dépôts totaux	СМА	Dépôts totaux	СМА	Dépôts totaux
		μg/m3	μg/m2s	μg/m3	μg/m2s	μg/m3	μg/m2s
	PM	1,17E-02		6,45E-03		6,68E-03	
	CO	1,17E-01		6,44E-02		6,67E-02	
•	502	6,97E-02		3,86E-02		3,99E-02	
!	NOx	8,21E-02		4,51E-02		4,67E-02	
	Acétaldéhyde	9,80E-04		5,38E-04		5,57E-04	
	Acroléine	2,06E-04		1,13E-04		1,17E-04	
COV	Benzène	5,93E-04		3,26E-04		3,37E-04	
	Formaldéhyde	9,29E-04		5,10E-04		5,28E-04	
	Phénol	9,80E-04		5,38E-04		5,57E-04	
НАР	Naphtalène	4,69E-05	2,70E-08	2,57E-05	2,92E-08	2,67E-05	1,73E-08
HAF	BaP	4,091-03	2,70L-00	2,37L-03	2,92L-00	2,07L-03	1,73L-00
	Cd	7,14E-06	3,56E-08	3,92E-06	3,43E-08	4,08E-06	2,20E-08
	Hg	3,51E-06	2,67E-09	1,93E-06	5,36E-09	2,00E-06	2,06E-09
	As	5,97E-05	1,53E-07	3,27E-05	1,73E-07	3,41E-05	9,83E-08
	Se	9,53E-05	4,25E-07	5,23E-05	3,71E-07	5,44E-05	2,58E-07
	Pb	2,39E-04	7,74E-07	1,31E-04	6,50E-07	1,36E-04	4,67E-07
Métaux	Sb	1,19E-04	5,31E-07	6,54E-05	4,64E-07	6,81E-05	3,23E-07
	Cr III	4,08E-04	2,19E-06	2,24E-04	1,78E-06	2,33E-04	1,31E-06
	Cr VI	8,33E-06	4,46E-08	4,57E-06	3,64E-08	4,76E-06	2,68E-08
	Со	2,38E-04	1,06E-06	1,31E-04	9,28E-07	1,36E-04	6,45E-07
	Mn	1,78E-04	1,06E-06	9,80E-05	8,35E-07	1,02E-04	6,33E-07
	Ni	1,19E-04	5,78E-07	6,54E-05	4,89E-07	6,80E-05	3,49E-07

B) DANS LES SOLS

A partir d'un coefficient de lessivage considéré comme commun à l'ensemble des polluants ($\lambda = 1.10^{-5}$), le dépôt humide a été pris en compte dans cette étude.

Pour déterminer le degré de contamination des sols par les retombées atmosphériques, deux approches différentes ont été utilisées :

- ✓ Dans le cas d'une exposition par ingestion directe de sol, le dépôt du polluant est supposé homogène sur une épaisseur de 1 cm ;
- ✓ Dans le cas d'une exposition par ingestion indirecte via la chaîne alimentaire, le dépôt de polluant est considéré comme homogène sur une profondeur de 20 cm (en prenant pour hypothèse que le labour régulier des terres contribue au mélange de la fraction déposée avec une épaisseur plus importante de sol).

A noter que dans les deux cas, la masse volumique moyenne des sols est prise égale à $1 500 \text{ kg/m}^3$.

Pour évaluer l'exposition aux substances s'étant accumulées au sol, il est retenu :

- ✓ la concentration estimée après 30 ans de dépôt pour le risque d'effets à seuil (c'està-dire, on évalue le risque pour une personne exposée dans 30 ans) ;
- √ la concentration moyenne sur la période de 30 ans pour le risque d'effets sans seuil.

		Zone de retombées maximales							
	Effets	à seuil	Effets sans seuil						
Agents	Zone surfacique (µg/ kg de sol) Zone racinaire (µg/ kg de sol)		Zone surfacique (µg/ kg de sol)	Zone racinaire (µg/ kg de sol)					
Naphtalène	5,25E+00	2,63E-01	2,63E+00	1,31E-01					
Benzo"a"pyrène	5,25E+00	2,63E-01	2,63E+00	1,31E-01					
Cadmium	6,94E+00	3,47E-01	3,47E+00	1,73E-01					
Mercure inorganique	5,45E-01	2,72E-02	2,72E-01	1,36E-02					
Arsenic	2,98E+01	1,49E+00	1,49E+01	7,44E-01					
Selenium	8,20E+01	4,10E+00	4,10E+01	2,05E+00					
Plomb	1,48E+02	7,41E+00	7,41E+01	3,71E+00					
Antimoine	1,02E+02	5,11E+00	5,11E+01	2,55E+00					
Chrome 3	4,20E+02	2,10E+01	2,10E+02	1,05E+01					
Chrome 6	8,58E+00	4,29E-01	4,29E+00	2,14E-01					
Cobalt	2,04E+02	1,02E+01	1,02E+02	5,11E+00					
Manganèse	2,04E+02	1,02E+01	1,02E+02	5,09E+00					
Nickel	1,11E+02	5,55E+00	5,55E+01	2,78E+00					

C) DANS LES DENREES ALIMENTAIRES

Le degré de contamination de l'environnement a été évalué en utilisant un modèle d'exposition multivoies établi selon les formulations et les recommandations citées par l'US-EPA et l'INERIS :

- US-EPA, HHRAP: Human Health Risk Assessment Protocol for hazardous waste combustion facilities, Peer review draft, office of Solid Waste, 1998, EPA/530/0-98/001A,
- INERIS: Evaluation de l'impact sur la santé des rejets atmosphériques des tranches charbon d'une grande installation de combustion. Partie 2: Exposition par voies indirectes. Ministère de l'Ecologie et du Développement Durable. R. Bonnard, Unité d'évaluation des Risques Sanitaires Direction des risques chroniques. Juin 2003.

A partir de la méthodologie développée par la Société KALIES, les flux et apports de chacun des contaminants dans l'environnement sont qualifiés et quantifiés à partir de formules mathématiques. Le calcul repose sur la concentration de la substance dans les sols ainsi que sur les coefficients de transfert de cette substance dans les denrées alimentaires :

- légumes-feuilles (choux-fleurs, laitues, endives,...),
- légumes-fruits (tomates, concombres, haricots,...),
- légumes racines (pommes de terre, céleris,...),
- fruits (noix, poires, pommes, pêches,...),
- viande bovine, porcine et de charcuterie (par la consommation par les animaux d'herbe poussant sur les sols impactés par exemple);
- viande de volaille ;
- produits laitiers;
- œufs.

Les concentrations des agents polluants obtenues dans les différents compartiments de l'environnement cités précédemment sont présentées dans le tableau ci-après.

Comme précédemment, pour évaluer l'exposition aux substances s'étant accumulées au sol, il est retenu :

- la concentration estimée après 30 ans de dépôt pour le risque d'effets à seuil (c'est-à-dire que le risque sera évalué pour une personne exposée dans 30 ans);
- la concentration moyenne sur la période de 30 ans pour le risque d'effets sans seuil.

Nota : Le choix des valeurs des paramètres de transfert utilisées s'est fait en tenant compte :

 du rapport de l'INERIS DRC-17-163615-01452A « Coefficients de transfert des éléments traces métalliques vers les plantes, utilisés pour l'évaluation de l'exposition - Application dans le logiciel MODUL'ERS » du 26/06/2017.

- du document HHRAP (US-EPA, HHRAP : Human Health Risk Assesment Protocol for hazardous waste combustion facilities, Peer review draft, office of Solid Waste, 1998, EPA/530/0-98/001A),
- de l'IRSN (IRSN, Beaugelin-Sellier, Adaptation du modèle de transfert GT3-GRNC dans un écosystème agricole aux polluants inorganiques non radioactifs, Paramètres de transfert, DPRE/SERLAB/01).

Concentration dans les différents compartiments de l'environnement

Zone de retombées maximales

Effets à seuil

	CONCE	NTRATION M	OYENNE T	OTALE DA	NS LES DIF	FERENTS O	COMPARTI	MENTS POL	JR LES EFF	ETS A SEUIL
Agents		VE	GETAUX (μ	g/kg de MF	=)			ANIMAUX	(µg/kg de	MF)
.	Herbe	Légumes feuilles	Légumes fruits	Légumes racines	Fruits	Céréales	Bœuf	Volaille	Lait de vache	Œuf
Naphtalène	1,80E-01	1,36E-01	1,27E-01	7,07E-02	1,30E-01	1,26E-01	1,98E-01	1,42E-03	5,55E-02	8,14E-04
Benzo"a"pyrène	5,73E-02	1,39E-02	4,29E-03	1,59E-02	7,83E-03	3,47E-03	2,28E-01	2,93E-03	6,28E-02	1,67E-03
Cadmium	1,97E-01	5,71E-02	4,45E-02	2,22E-02	4,91E-02	2,15E-02	1,84E-03	1,52E-02	1,31E-04	3,58E-04
Mercure inorganique	3,83E-02	9,25E-03	8,26E-03	8,17E-03	8,63E-03	8,17E-03	4,11E-03	2,01E-04	3,41E-03	1,24E-05
Arsenic	3,58E-01	6,83E-02	1,41E-02	1,19E-02	3,41E-02	5,95E-03	7,28E-02	1,19E-02	2,86E-03	1,19E-02
Selenium	9,05E-01	2,42E-01	9,28E-02	9,02E-02	1,48E-01	8,20E-03	2,16E-01	1,85E+00	7,32E-01	1,85E+00
Plomb	1,85E+00	3,94E-01	1,24E-01	6,67E-02	2,24E-01	6,67E-02	5,56E-02	3,57E+00	6,07E-02	3,57E+00
Antimoine	2,07E+00	3,65E-01	1,79E-01	1,53E-01	2,48E-01	1,02E+00	1,75E-01	2,07E-03	2,31E-02	2,07E-03
Chrome 3	4,46E+00	9,34E-01	1,68E-01	9,45E-02	4,51E-01	9,45E-02	2,63E+00	1,26E-01	9,38E-01	1,26E-01
Chrome 6	9,10E-02	1,91E-02	3,44E-03	1,93E-03	9,22E-03	1,93E-03	5,36E-02	2,58E-03	1,92E-02	2,58E-03
Cobalt	2,09E+00	5,78E-01	1,09E-01	1,33E-01	2,46E-01	3,27E-02	2,28E-01	4,09E-03	5,97E-01	4,09E-03
Manganèse	2,09E+00	4,03E-01	3,20E-02	0,00E+00	1,69E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Nickel	1,31E+00	2,71E-01	6,91E-02	4,44E-02	1,44E-01	3,33E-02	8,06E-01	1,11E-02	1,76E-01	8,91E-01

Effets sans seuil

	CONCENT	RATION MO	YENNE TO	TALE DANS	LES DIFF	ERENTS CO	ENTS COMPARTIMENTS POUR LES EFFETS SANS SEUIL				
		VE	GETAUX (μ	g/kg de Mi	F)			ANIMAUX	(µg/kg de	MF)	
Agents	Herbe	Légumes feuilles	Légumes fruits	Légumes racines	Fruits	Céréales	Bœuf	Volaille	Lait de vache	Œuf	
Naphtalène	1,17E-01	7,33E-02	6,37E-02	3,53E-02	6,73E-02	6,29E-02	1,23E-01	7,10E-04	3,45E-02	4,07E-04	
Benzo"a"pyrène	5,55E-02	1,21E-02	2,56E-03	7,95E-03	6,10E-03	1,73E-03	1,75E-01	1,46E-03	4,84E-02	8,36E-04	
Cadmium	1,34E-01	3,54E-02	2,28E-02	1,11E-02	2,74E-02	1,08E-02	1,17E-03	7,58E-03	8,42E-05	1,79E-04	
Mercure inorganique	2,19E-02	5,17E-03	4,17E-03	4,09E-03	4,54E-03	4,09E-03	2,32E-03	1,00E-04	1,93E-03	6,20E-06	
Arsenic	3,32E-01	6,36E-02	9,39E-03	5,95E-03	2,94E-02	2,98E-03	5,47E-02	5,97E-03	2,16E-03	5,97E-03	
Selenium	8,72E-01	2,02E-01	5,28E-02	4,51E-02	1,08E-01	4,10E-03	1,65E-01	9,27E-01	5,63E-01	9,27E-01	
Plomb	1,68E+00	3,44E-01	7,37E-02	3,33E-02	1,73E-01	3,33E-02	4,14E-02	1,79E+00	4,55E-02	1,79E+00	
Antimoine	1,56E+00	2,84E-01	9,75E-02	7,66E-02	1,66E-01	5,11E-01	1,19E-01	1,03E-03	1,57E-02	1,03E-03	
Chrome 3	4,38E+00	8,82E-01	1,17E-01	4,73E-02	4,00E-01	4,73E-02	2,02E+00	6,32E-02	7,27E-01	6,32E-02	
Chrome 6	8,94E-02	1,80E-02	2,39E-03	9,65E-04	8,17E-03	9,65E-04	4,13E-02	1,29E-03	1,49E-02	1,29E-03	
Cobalt	2,09E+00	4,91E-01	7,04E-02	6,64E-02	2,08E-01	1,63E-02	1,77E-01	2,05E-03	4,66E-01	2,05E-03	
Manganèse	2,09E+00	4,03E-01	3,20E-02	0,00E+00	1,69E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
Nickel	1,23E+00	2,45E-01	4,33E-02	2,22E-02	1,18E-01	1,67E-02	6,08E-01	5,57E-03	1,34E-01	4,45E-01	

4.3.2 DESCRIPTION DES SCENARIOS D'EXPOSITION

De façon générale pour cette étude, la durée d'exposition correspond au percentile 90 de la durée de résidence (30 ans).

Pour rappel, les calculs sont réalisés au niveau de la zone de retombées maximales (approche conservatrice).

A) CAS DE L'EXPOSITION PAR INHALATION

Pour l'exposition par inhalation, les scénarios d'exposition détaillent le temps passé à différents endroits de la zone impactée (budget espace-temps).

Le tableau ci-dessous présente les scénarios retenus pour chacun des trois récepteurs :

Scénario	Description du scénario	Commentaire
Le plus simple et majorant	100 % du temps passé au point où les concentrations sont maximales à l'extérieur des limites du site	Réservé à une première approche Scénario conservateur

B) CAS DE L'EXPOSITION PAR INGESTION

Du fait des différences de poids corporels et de consommation alimentaire de la population, trois classes d'âge sont distinguées par la suite : les nourrissons (0 à 6 mois), les enfants (de 6 mois à 15 ans), les adultes (plus de 15 ans).

✓ Cas de l'ingestion de sol

Les données concernant les quantités de sols ingérées sont celles utilisées dans le cadre du scénario dit « sensibles » pour la définition des valeurs de constat d'impact lié aux sols pollués (INERIS, Bonnard, Hulot, Lévèque, Méthode de calcul des valeurs de constat d'impact dans les sols, DRC-01-25587/DESP-R01, Novembre 2001), à savoir :

	Nourrisson (< 6 mois)	Enfant (entre 6 mois et 15 ans)	Adulte (> 15 ans)
Fréquence d'exposition (j/an)	365	365	365
Poids corporel (kg)	6	28,4	67,2
Quantité de sol ingérée (mg/j)	0	87,9	50

✓ Cas de l'ingestion de denrées alimentaires

L'exposition de la population par ingestion de denrées alimentaires est fonction de ses habitudes alimentaires. Les données prises en compte dans l'étude sont détaillées dans le tableau ci-après (*Etude INCA – Etude individuelle Nationale sur les Consommations Alimentaires*).

	Nourrisson (< 6 mois)	Enfant (entre 6 mois et 15 ans)	Adulte (> 15 ans)
Fréquence d'exposition (j/an)	365	365	365
Poids corporel (kg)	6	28,4	67,2
Quantité de légumes-feuilles ingérée (kg/j)	0	0,03	0,052

	Nourrisson (< 6 mois)	Enfant (entre 6 mois et 15 ans)	Adulte (> 15 ans)
Quantité de légumes-fruits ingérée (kg/j)	0	0,023	0,04
Quantité de légumes-racines ingérée (kg/j)	0	0,077	0,093
Quantité de fruits ingérée (kg/j)	0	0,091	0,145
Quantité de viande ingérée (sauf volaille) (kg/j)	0	0,069	0,098
Quantité de volaille ingérée (kg/j)	0	0,023	0,037
Quantité d'œuf ingérée (kg/j)	0	0,011	0,037
Quantité de produits laitiers ingérée (Kg/j)	0	0,334	0,248

Nota : pour la classe d'âge enfant (6 mois à 15 ans), les quantités d'aliments consommées ont été calculées en moyennant les différentes données de classes d'âge correspondantes

Parmi ces produits, seule la part auto-produite est considérée dans la suite de l'étude. C'est en effet uniquement cette quantité-ci qui est susceptible d'être impactée par les activités du site. La part auto-produite dans la consommation alimentaire est la suivante (INSEE, Bertrand M. Consommation et lieux d'achat des produits alimentaires en 1991. INSEE Résultats, série consommations mode de vie, septembre 1993. n°54-55) :

			Part de produits autoconsommée
Catégories	Références	Produits	Bassin parisien
Légumes-feuilles	2211	Laitues	0,474
Légumes-fruits	224	Tomates	0,257
Légumes-racines	21	Pommes de terre	0,288
Fruits	321	Pommes	0,184
Viande de bœuf	411	Bœuf	0,017
Viande de volaille	51	Volaille	0,204
Œufs	54	Œufs	0,069
Produits laitiers	711	Laits frais	0,22

4.3.3 CALCUL DES NIVEAUX D'EXPOSITION

A) NIVEAUX D'EXPOSITION PAR INHALATION

Pour la voie respiratoire, l'exposition est exprimée en concentration moyenne inhalée, calculée ainsi :

$$CI = \frac{\sum_{i} C_{i} \times t_{i}}{T}$$

avec CI: concentration moyenne inhalée (en μg/m³),

 C_i : concentration de polluant dans l'air inhalé pendant une fraction de temps i (en $\mu g/m^3$); elle correspond à la concentration moyenne annuelle déterminée grâce à la modélisation des rejets atmosphériques,

t_i : durée d'exposition à la concentration Ci sur la période d'exposition,

T : durée de la période d'exposition (même unité que t_i).

Les niveaux d'exposition de la population dans l'air par inhalation sont donc les suivants :

Paramètre		Zone de retombées maximales
		μg/m³
	PM	3,52E-02
	СО	3,52E-01
9	502	2,11E-01
N	NOx	2,46E-01
	Acétaldéhyde	2,94E-03
	Acroléine	6,20E-04
COV	Benzène	1,78E-03
	Formaldéhyde	2,79E-03
	Phénol	2,94E-03
HAP	Naphtalène	1,41E-04
HAF	BaP	1,412-04
	Cd	2,14E-05
	Hg	1,06E-05
	As	1,79E-04
	Se	2,86E-04
	Pb	7,14E-04
Métaux	Sb	3,57E-04
	Cr III	1,22E-03
	Cr VI	2,50E-05
	Co	7,14E-04
	Mn	5,35E-04
	Ni	3,57E-04

B) NIVEAUX D'EXPOSITION PAR INGESTION

Dans les scénarios d'exposition par ingestion, la dose journalière d'exposition (DJE) est donnée par la formule suivante :

$$DJE = \frac{\sum_{i} Q_{i} x C_{i} x f_{i}}{P}$$

Avec DJE: Dose journalière d'exposition liée à l'ingestion de la substance (mg/kg/jour)

 Q_i : Quantité de matrice i (sol, aliments...) ingérée par jour, exprimée en kg/j ou L/j (moyenne annuelle)

 C_i : Concentration de la substance ingérée dans la matrice i, exprimée en mg/kg ou mg/L

 f_i : fraction de la quantité de matrice i consommée et exposée à la contamination étudiée (assimilable à la part de consommation de produits locaux

P: Masse corporelle de la personne (kg)

Pour les classes d'âge, les voies d'exposition modélisées sont :

- ∀ l'ingestion de sols ;
- 🔖 l'ingestion de légumes-feuilles (choux fleurs, laitues, endives...) ;
- 🔖 l'ingestion de légumes-fruits (tomates, concombres, haricots...) ;
- ৬ l'ingestion de légumes racines (céleris...);
- ♥ l'ingestion de tubercules (pommes de terre) ;
- 🔖 l'ingestion de fruits (noix, poires, pommes, pêches...) ;
- ∀ l'ingestion de viande bovine ;
- ♥ l'ingestion de viande de volaille ;
- ⋄ l'ingestion de produits laitiers ;
- ⋄ l'ingestion de lait maternel;
- ♥ I'ingestion d'œufs.

4.4 CARACTERISATION DES RISQUES POUR LES REJETS ATMOSPHERIQUES

4.4.1 EVALUATION DES EFFETS SYSTEMIQUES A SEUIL

Pour les polluants à seuil, il s'agit de comparer l'exposition attribuable à l'installation à la Valeur Toxicologique de Référence (VTR) publiée dans la littérature. Il est ainsi calculé un Quotient de Danger qui est le rapport entre les estimations d'apports journaliers en polluant et la VTR.

Dans le cas d'un scénario par inhalation, l'exposition attribuable à l'installation correspond à la Concentration Inhalée (CI) dans l'environnement de la substance étudiée. Le Quotient de Danger systémique par inhalation (QDsi) se calcule ainsi :

$$\mathsf{QDsi} = \frac{CI}{VTR}$$

Avec CI: concentration moyenne inhalée,

VTR : valeur toxicologique de référence, à seuil, pour la voie et la durée d'exposition correspondant au scénario considéré.

Dans le cas d'un scénario par ingestion, l'exposition attribuable à l'installation correspond à la Dose Journalière d'Exposition (DJE) de la substance étudiée. Le Quotient de Danger systémique par voie orale (QDso) se calcule ainsi :

$$QDso = \frac{DJE}{VTR}$$

Avec DJE: dose journalière d'exposition liée à l'ingestion de la substance (en mg/kg/jour),

VTR : valeur toxicologique de référence, à seuil, pour la voie et la durée d'exposition correspondant au scénario considéré.

Les tableaux suivants présentent, pour toutes les substances retenues, les valeurs des QD systémiques par inhalation et par ingestion.

A noter que pour chaque substance et chaque scénario, les quotients de danger présentés sont ceux liés à la classe d'âge la plus impactée, soit les enfants.

	ORGANE CIBLE		QDs Zone de retombées maximales		aximales
Paramètres	Inhalation	Ingestion	Inhalation	Ingestion	Somme par paramètre
Acétaldéhyde	Système nerveux		1,84E-05		1,84E-05
Acroléine	Système respiratoire		7,75E-04		7,75E-04
Benzène	Système immunitaire		1,78E-04		1,78E-04
Formaldéhyde	Système oculaire		2,27E-05		2,27E-05
Phénol	Système circulatoire Système rénal Système nerveux		1,47E-05		1,47E-05
Naphtalène	Système respiratoire	Poids	3,81E-06	1,48E-05	1,86E-05
Cd	Système rénal	Système osseux	4,76E-05	3,10E-04	3,57E-04
Hg	Système nerveux	Non précisé	3,53E-04	3,94E-05	3,93E-04
As	Système nerveux	Peau	1,19E-02	3,71E-04	1,23E-02
Se	Système gastrointestinal Système cardiovasculaire Système nerveux	Intoxication	1,43E-05	3,24E-04	3,38E-04
Pb	Systèmes rénal Système nerveux Système sanguin	Systèmes rénal Système nerveux Système sanguin	7,93E-04	2,88E-03	3,67E-03
Sb	-	Poids	-	1,38E-04	1,38E-04
Cr III	Système respiratoire	Non précisé	6,10E-04	2,03E-06	6,12E-04
Cr VI	Système respiratoire	Système gastrointestinal	8,33E-04	6,91E-05	9,02E-04
Со	Système respiratoire	Système cardiaque	7,14E-03	1,13E-03	8,27E-03
Mn	Système nerveux	Système nerveux central	1,78E-03	6,71E-06	1,79E-03
Ni	Système respiratoire	Système reproducteur	1,55E-03	3,10E-04	1,86E-03
Somme par or	gane cible				
QDs Système nerveux				1,78E-02	
QDs Système respiratoire					1,09E-02
QDs Système rénal				3,73E-03	
QDs Système sanguin				3,68E-03	
QDs Système cardiaque				1,13E-03	
QDs Peau				3,71E-04	
QDs Système reproducteur				3,10E-04	
QDs Système immunitaire				1,78E-04	
QDs Poids				1,53E-04	
QDs Système gastrointestinal				8,34E-05	
QDs Système oculaire				2,27E-05	

Les QD des paramètres pour lesquels l'organe cible n'est pas précisé sont ajoutés au QD total le plus élevé.

Pour chaque substance et chaque organe cible, les valeurs des Quotients de Danger totaux étant inférieurs à 1, l'impact sanitaire de l'installation projetée peut être considéré comme non significatif en termes d'effets systémiques à seuil à l'encontre des populations environnantes dans le domaine de l'air.

4.4.2 EVALUATION DES EFFETS CANCERIGENES A SEUIL

Pour les polluants à seuil, il s'agit de comparer l'exposition attribuable à l'installation à la Valeur Toxicologique de Référence (VTR) publiée dans la littérature. Il est ainsi calculé un Quotient de Danger qui est le rapport entre les estimations d'apports journaliers en polluant et la VTR.

Dans la présente étude, seul le Cadmium présente des effets cancérigènes à seuil pour une exposition par inhalation.

Dans le cas d'un scénario par inhalation, l'exposition attribuable à l'installation correspond à la Concentration Inhalée (CI) dans l'environnement de la substance étudiée. Le Quotient de Danger cancérigène par inhalation (QDci) se calcule ainsi :

$$QDci = \frac{CI}{VTR}$$

Avec CI: concentration moyenne inhalée,

VTR : valeur toxicologique de référence, à seuil, pour la voie et la durée d'exposition correspondant au scénario considéré.

Paramètres	ORGANE CIBLE	QDc Zone de retombées maximales	
	Inhalation	Inhalation	
Cd	Système respiratoire	7,13E-05	

La valeur du Quotient de Danger étant inférieur à 1, l'impact sanitaire des installations projetées peut être considéré comme non significatif en termes d'effets cancérigènes à seuil à l'encontre des populations environnantes dans le domaine de l'air.

4.4.3 EVALUATION DES EFFETS SANS SEUIL

Dans le cas d'effets sans seuil, il s'agit de calculer un Excès de Risque Individuel (ERI) en multipliant l'Excès de Risque Unitaire (ERU), correspondant à la VTR, par l'exposition attribuable à l'installation.

Dans le cas d'un scénario par inhalation, l'exposition attribuable à l'installation correspond à la Concentration Inhalée (CI) dans l'environnement de la substance étudiée. L'Excès de Risque Individuel par inhalation (ERIi) se calcule ainsi :

$$ERIi = \sum_{i} \frac{CI_{i} \times T_{i}}{T_{m}} \times ERU$$

Avec C_i : concentration moyenne inhalée (en $\mu g/m^3$),

Ti: durée de la période d'exposition i (en années) sur laquelle l'exposition (CI_i) est calculée,

Tm: durée de temps sur laquelle l'exposition est rapportée (en années),

ERI : excès de risque unitaire, pour la voie d'exposition correspondant au scénario considéré.

Dans le cas d'un scénario par ingestion, l'exposition attribuable à l'installation correspond à la Dose Journalière d'Exposition (DJE). L'Excès de Risque Individuel par ingestion (ERIo) se calcule ainsi :

$$ERIo = \sum_{i} \frac{DJE_{i} \times T_{i}}{T_{m}} \times ERU$$

Avec DJE_i: dose journalière d'exposition liée à l'ingestion de la substance (en mg/kg/jour),

Ti: durée de la période d'exposition i (en années) sur laquelle l'exposition (DJE_i) est calculée,

Tm: durée de temps sur laquelle l'exposition est rapportée (en années),

ERI : excès de risque unitaire, pour la voie d'exposition correspondant au scénario considéré.

Pour les effets sans seuil, la valeur attribuée à Tm est toujours égale à 70 ans.

D'après le guide sur l'Evaluation des Risques Sanitaires dans les études d'impact des ICPE de l'INERIS (2003), le temps de résidence est de 30 ans. Des études montrent que le temps de résidence d'un ménage dans un même logement est de 30 ans (percentile 90 – étude réalisée en France (Nedellec et al, 1998)). C'est également la valeur qui est retenue par le guide INERIS sur la démarche intégrée pour l'évaluation de l'état des milieux et des risques sanitaires d'août 2009. La valeur attribuée à Ti sera donc 30 ans.

Les valeurs d'Excès de Risque Individuel (ERI) sont présentées séparément pour chaque substance dans les tableaux suivants. Pour chacune d'elle, l'impact sanitaire de l'installation peut être considéré comme non significatif en termes d'effets cancérigènes sans seuil si la valeur d'Excès de Risques Individuel est inférieure à 10⁻⁵ (un risque de cancer pour 100 000 individus selon l'OMS).

Les tableaux suivants présentent les ERI pour toutes les substances retenues, pour l'exposition d'un individu né à t = 0.

	ERI Zone de retombées maximales		
Paramètres	Inhalation	Ingestion	Somme par paramètre
Acétaldéhyde	2,77E-09		2,77E-09
Benzène	1,98E-08		1,98E-08
Formaldéhyde	6,29E-09		6,29E-09
BaP	6,65E-08	2,13E-08	8,77E-08
As	1,15E-08	5,10E-08	6,25E-08
Pb	3,67E-09	3,14E-09	6,81E-09
Cr VI	6,43E-08	6,49E-09	7,08E-08
Ni	2,60E-08		2,60E-08
ERI sur 30 ans	2,83E-07		

Pour chaque substance, la valeur de l'Excès de Risque Individuel étant inférieur à 10⁻⁵, l'impact sanitaire de l'installation projetée peut être considéré comme non significatif en termes d'effets cancérigènes sans seuil à l'encontre des populations environnantes dans le domaine de l'air.

4.5 SUIVI DES TRACEURS DE POLLUTION

Pour les polluants ne disposant pas de VTR, la concentration maximale modélisée est comparée à la valeur guide dans le tableau suivant :

Substance (traceur de pollution)		Concentrations au niveau de la zone de retombées maximales (en µg/m³)		
Nom	N° CAS	Résultat de la dispersion	Valeur Guide Code de l'environnement	
Monoxyde de carbone	630-08-0	0,352	10 000	
Dioxyde de soufre	7446-09-5	0,211	50	
Oxyde d'azote	10102-43-9 10102-44-0	0,246	40	
Poussières	=	0,0352	25	

Les concentrations modélisées pour les polluants ne disposant pas de VTR sont inférieures aux valeurs guides correspondantes au niveau de la zone de retombées maximales.

4.6 INCERTITUDES

Les incertitudes peuvent être classées en 3 parties.

4.6.1 INCERTITUDES LIEES AUX EMISSIONS

En ce qui concerne le terme source, plusieurs hypothèses ont été prises en compte. Le tableau cidessous les recense, tout en précisant leur caractère majorant, minorant, représentatif ou indéterminé.

Source d'émission	Paramètre/donnée utilisé	Caractère Majorant/Minorant/ représentatif/indéterminé
	Concentrations émises	Majorant (valeurs réglementaires)
Cheminée -	Débit d'émission	Donrécontatif (fourni nav CDR)
	Temps de fonctionnement	Représentatif (fourni par CRB)
	Répartition des métaux et des COV	A priori majorant (bibliographie)

Il apparait que les choix des paramètres pris en compte sont pour la plupart majorants, voire représentatifs d'un mode de fonctionnement et d'une exposition réellement observée.

4.6.2 INCERTITUDES LIEES AUX VTR

A) CHOIX DES VTR

Selon les organismes, les méthodes de calcul des Valeurs Toxicologiques de Référence considèrent des facteurs d'incertitudes très variables. Les VTR sont élaborées en tenant compte de facteurs d'extrapolation et en fonction de l'état des connaissances actuelles.

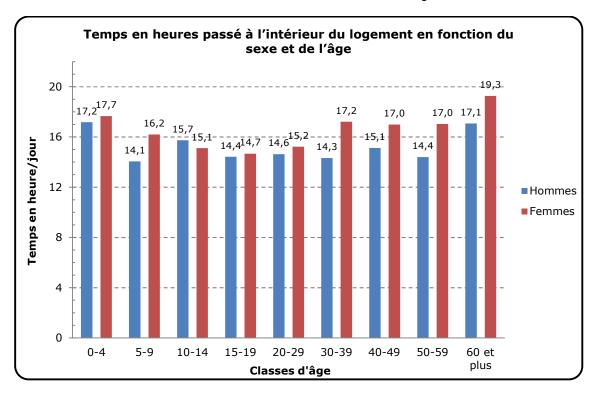
Le choix de VTR s'est fait conformément à la note d'information DGS/EA1/DGPR/2014/307 du 31 octobre 2014.

B) SPECIATION DES TRACEURS DE RISQUE

Le choix des COV et des métaux s'est basé sur une étude du CAREPS intitulée « Centrales d'enrobage de matériaux à chaud : Guide pour le choix des composés émis dans le cadre des études d'évaluation de risques sanitaires » (Juin 2010).

L'ensemble des poussières a été assimilée à des particules de diamètre 2,5 présentant une valeur guide plus contraignante.

Le chrome VI est la forme du chrome présentant les effets sanitaires les plus importants en raison de sa forte toxicité. Afin de ne pas négliger ses effets et comme proposé dans l'étude du CAREPS, une proportion de 2 % du chrome total a été assimilée au chrome VI.


La totalité de l'arsenic a été considérée sous la forme inorganique. La toxicité aigüe et chronique de l'arsenic dépend de sa spéciation, c'est-à-dire de sa forme chimique sous laquelle il se trouve. L'arsenic inorganique correspond à la forme chimique la plus toxique par rapport à la forme organique.

Concernant les HAP, ils ont été assimilés en totalité au naphtalène pour les effets à seuil et au benzo-a-pyrène pour les effets sans seuil.

4.6.3 INCERTITUDES LIEES AUX SCENARIOS D'EXPOSITION

A) TEMPS D'EXPOSITION

Dans les scénarii « habitant majorant », il a été pris en compte pour l'élaboration des Quotients de Dangers et des Excès de Risque Individuel, l'hypothèse que la population du domaine d'étude est exposée aux rejets du site 100 % du temps. Or, il s'avère que cette hypothèse est majorante au vu des données de l'étude « Description du budget espace-temps et estimation de l'exposition de la population française dans son logement » de septembre 2009 de l'observatoire de la Qualité de l'Air Intérieur et de l'Institut de Veille Sanitaire. La moyenne nationale du temps en heures passé à l'intérieur du logement est de 16,16. Le graphique cidessous recense les résultats de l'étude en fonction des classes d'âge et du sexe.

Ces données confirment que l'hypothèse retenue (exposition 100 % du temps au lieu d'habitation) est majorante et est source d'incertitude concernant les valeurs d'indicateurs de risque pour les effets à seuil et sans seuil.

B) UTILISATION DES FACTEURS DE BIOCONCENTRATION / BIOTRANSFERT

Les concentrations en métaux via la chaîne alimentaire ont été évaluées en prenant en compte des facteurs de bioconcentration (BCF) et facteurs de biotransfert (BT) issus de la littérature. Ils présentent une variabilité importante en fonction de plusieurs paramètres (type d'organisme considéré, pH...) et il existe des variations parfois de plusieurs ordres de grandeur entre les valeurs présentées.

Cependant, en l'état actuel des connaissances scientifiques et techniques, celle-ci ne peut être réduite. L'approche retenue qui suit le principe de prudence et de proportionnalité (écartant les facteurs de bioconcentrations extrêmes) permet cependant de conclure sur l'acceptabilité du risque.

C) CONCENTRATIONS MOYENNES D'EXPOSITION

Les concentrations moyennes d'exposition dans l'air sont équivalentes aux valeurs de concentrations calculées à partir de la modélisation atmosphérique. On considère donc que le taux de pénétration des polluants dans les habitations est égal à 100 % et que les polluants ne sont pas dégradés (sous l'effet du rayonnement solaire par exemple) mais sont supposés persistants dans l'atmosphère. Cette approche est majorante.

D) EXPOSITION PAR INGESTION

Dans le cadre de l'estimation de l'exposition de la population par ingestion, aucun phénomène d'atténuation naturelle des polluants dans l'environnement (lessivage, lixiviation, biodégradation....) n'a été considéré dans cette étude.

E) EXPOSITION PAR VOIE CUTANEE

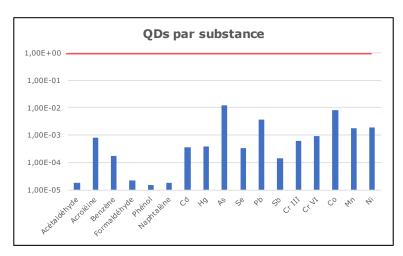
La voie d'exposition cutanée n'a pas été retenue parmi les scénarios d'exposition. Cette voie d'exposition est négligeable par rapport aux autres voies d'exposition. La peau constitue une barrière de protection, alors que des organes tels que les poumons ont un rôle d'échange entre le corps et l'extérieur. De plus, la surface de contact du polluant avec la peau est 200 fois plus faible que celles des poumons.

4.6.4 INCERTITUDES LIEES A LA MODELISATION

La modélisation de la dispersion atmosphérique est basée sur des équations mathématiques qui doivent rendre compte des phénomènes physiques et chimiques comme nous pouvons les observer dans la réalité. Il y a donc une incertitude entourant les résultats de modélisation.

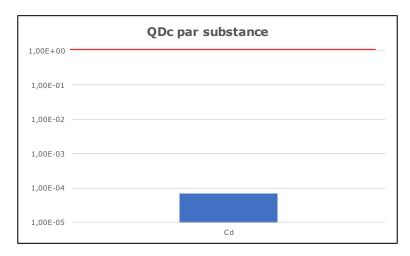
Les vitesses de dépôts secs et humides des polluants dans l'atmosphère sont issues de la bibliographie scientifique.

5 CONCLUSION DE L'EVALUATION DU RISQUE SANITAIRE

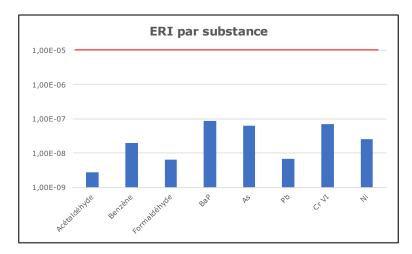

Le projet consiste en l'implantation, au sein de la carrière CRB actuellement exploitée, d'une centrale d'enrobage à chaud.

L'impact sanitaire actuel de la carrière a été étudié dans le DDAE de 2018 dans lequel il a été jugé comme étant nul.

La nouvelle centrale d'enrobage sera à l'origine d'émissions notamment dans le domaine de l'air, et principalement au niveau de la cheminée du filtres à manches du tambour sécheur malaxeur. Dans ce contexte, il s'avère pertinent d'évaluer l'impact sanitaire des installations projetées vis-à-vis des populations environnantes.


Sur la base des éléments déterminés dans l'évaluation des risques sanitaires, les graphiques qui suivent présentent les indicateurs de risque déterminés pour chaque substance :

Graphe QDs par substance


Il apparait que les quotients de dangers systémiques déterminés pour chaque substance retenue sont inférieurs à 1.

Graphe QDc par substance

Il apparait que les quotients de dangers cancérigènes déterminés pour chaque substance retenue sont inférieurs à 1.

Graphe ERI par substance

Il apparait que les excès de risque individuels déterminés pour chaque substance retenue sont inférieurs à 10^{-5} .

Au vu de l'étude sanitaire, pour le scénario le plus majorant, les substances contribuant significativement au risque sont le benzo-a-pyrène (HAP), le Chrome VI et l'arsenic représentant respectivement 31 %, 25 % et 22 % de l'ERI total sur 30 ans.

Par ailleurs, les incertitudes identifiées ne remettent pas en cause les conclusions de l'étude.

En conclusion, le projet d'implantation d'une centrale d'enrobage au sein de la carrière CRB peut être qualifié d'acceptable en termes d'impact sanitaire dans la limite du respect des conditions suivantes :

- 🔖 Maîtrise des émissions selon les conditions définies dans la présente étude ;
- Non dépassement des flux annuels mentionnés dans la présente étude ;
- Auto surveillance de la source d'émissions selon la réglementation applicable.

Dans ce contexte, l'impact sanitaire futur de la carrière et de la nouvelle centrale d'enrobage sera acceptable.

6 METHODOLOGIE

L'évaluation du risque sanitaire a été réalisée à partir (liste non exhaustive) :

- du guide InVS pour l'analyse du volet sanitaire des études d'impact réalisé par le département Santé-Environnement, publié en février 2000,
- du guide « Evaluation de l'état des milieux et des risques sanitaires » publié par l'INERIS en août 2013,
- de la circulaire du 9 août 2013 relative à la démarche de prévention et de gestion des risques sanitaires des installations classées soumises à autorisation,
- de la note d'information n°DGS/EA1/DGPR/2014/307 du 31 octobre 2014 relative aux modalités de sélection des substances chimiques et de choix des VTR pour mener les évaluations des risques sanitaires dans le cadre des études d'impact et de la gestion des sites et sols pollués,
- des bases de données de Valeurs Toxicologiques de Référence établies par les organismes suivants : ANSES, US-EPA, ATSDR, OMS/IPCS, Health Canada, RIVM, OEHHA et EFSA,
- de données provenant de l'Institut National de l'Environnement Industriel et des Risques (INERIS),
- 🔖 de données provenant de l'US Environmental Protection Agency (US EPA),
- de l'étude du CAREPS « Centrales d'enrobage de matériaux à chaud : Guide pour le choix des composés émis dans le cadre des études d'évaluation de risques sanitaires », Juin 2010,
- du dossier de demande d'autorisation environnementale déposé par les Carrières de la Roche Blain en 2018 (référence GHI/R/16-17/0095/juin-décembre 2017, Geo Hydro Investigation),
- de données provenant de l'INSEE (Institut National de la Statistique et des Etudes Economiques),
- 🔖 de données provenant du Ministère de l'éducation nationale,
- de données provenant de la base FINESS.

ERS CRB - FRESNEY-LE-PUCEUX

ANNEXE

VALEURS TOXICOLOGIQUES DE REFERENCE

KALIES - KAR 19.43 73

					ERU			Date de			Classification	1				Expertise colle	ctive national	e
Substance	N° CAS	Exposition	Atteintes sur l'organisme	Nom	Valeur	Unité	Organisme	construction / révision	Sujet d'étude	US EPA	IARC	Union européenne	Commentaires	Choix Note 2014	ANSES	Date	INERIS	Date
Poussières	/	Inhalation	/	/	/	/	/	revision /	/	/	/	/ europeenne	/	/	/		/	
Poussières	/	Ingestion	/	/	/	/	/	/	/	/	/	/	/	/	/		/	
Dioxyde de soufre	7446-09-5	Inhalation	/	/	/	/	/	/	/	/	3	/		/	/		/	
Dioxyde de soufre	7446-09-5	Ingestion	/	/	/	/	/	/	/	/	3	/		/	/		/	
Oxydes d'azote	10102-43-9 10102-44-0	Inhalation	/	/	/	/	/	/	/	/	/	/	/	/	/		/	
Oxydes d'azote	10102-43-9 10102-44-0	Ingestion	/	/	/	/	/	/	/	/	/	/	/	/	/		/	
Monoxyde de carbone	630-08-0	Inhalation	/	/	/	/	/	/	/	/	/	R1A		/	/		/	
Monoxyde de carbone	630-08-0	Ingestion	/	/	/	/	/	/	/	/	/	R1A		/	/		/	
Acétaldéhyde	75-07-0	Inhalation	Cancer nasal	ERUi	2,20E-06	(µg/m3)-1	US-EPA	1988	rat	B2	2B	C2		Oui	/		Oui	2017
Acétaldéhyde	75-07-0	Inhalation	Cancer nasal	ERUi	9,00E-07	(µg/m3)-1	OMS	1995	rats	B2	2B	C2		Non	/		/	
Acétaldéhyde	75-07-0	Inhalation	Cancer nasal	ERUi	2,70E-06	(µg/m3)-1	OEHHA	1994	rat et hamster	B2	2B	C2		Non	/		/	
Acétaldéhyde	75-07-0	Inhalation	Cancer nasal	ERUi	5,80E-07	(µg/m3)-1	Health Canada	1998	rat	B2	2B	C2		Non	/		/	
Acroléine	107-02-8	Inhalation	/	/	/	/	/	/	/	/	3	/	/	/	/		/	
Phénol	108-95-2	Inhalation	1	/		/	/	/	. /	D	/	/		/	/		/	
Benzène	71-43-2	Inhalation	Leucémie	ERUi	2,60E-05	(μg/m3)-1	ANSES	2014	homme	A	1	C1A/M1B		Oui	Oui	nov-13	/	
Benzène	71-43-2	Inhalation	Leucémie	ERUi	2,2E-6 à 7,8E-	(µg/m3)-1	US EPA	2000	homme	А	1	C1A/M1B		Non	/		/	
Benzène	71-43-2	Inhalation	Leucémie	ERUi	7,50E-06	(µg/m3)-1	OMS	2000	homme	А	1	C1A/M1B		Non	/		/	
Benzène	71-43-2	Inhalation	Leucémie	ERUi	3,30E-06	(µg/m3)-1	Health Canada	2010	homme	А	1	C1A/M1B		Non	/		/	
				ERUi	-						1	· ·					,	
Benzène	71-43-2	Inhalation	Leucémie		5,00E-06	(µg/m3)-1	RIVM	2001	homme	A	1	C1A/M1B		Non			/	
Benzène	71-43-2	Inhalation	Leucémie	ERUi	2,90E-05	(µg/m3)-1	OEHHA	2002	animal	A D1	1	C1A/M1B		Non	/ N = ==	: 17	No.	£4 10
Formaldehyde	50-00-0 50-00-0	Inhalation	Cancer du nez	ERUi ERUi	1,30E-05	(µg/m3)-1	US EPA OEHHA	1991 2008	rat	B1 B1	1	C1B/M2		Non Non	Non Non	mai-17 mai-17	Non Non	févr-10
Formaldehyde		Inhalation	Non précisé		6,00E-06	(µg/m3)-1			homme		1	C1B/M2						févr-10
Formaldehyde	50-00-0	Inhalation	Cancer du nez Cancer du	ERUi	5,26E-06	(µg/m3)-1	Health Canada	2000	rat	B1	1	C1B/M2		Oui	Non	mai-17	Oui	févr-10
Benzo[a]pyrène	50-32-8	Inhalation	scrotum, de la peau, de la vessie et des voies nasales	ERUi	8,70E-02	(µg/m3)-1	OMS	2000	homme	А	1	C1B	VTR exprimée pour un mélange de HAP contenant du BaP	Non	/		/	
Benzo[a]pyrène	50-32-8	Inhalation	Cancer du tractus respiratoire supérieur	ERUi	3,10E-05	(μg/m3)-1	Health Canada	2010	hamster	А	1	C1B		Non	/		/	
Benzo[a]pyrène	50-32-8	Inhalation	Cancer du tractus respiratoire supérieur	ERUi	1,10E-03	(µg/m3)-1	ОЕННА	2008	hamster	А	1	C1B		Oui	Oui	2013	/	
Benzo[a]pyrène	50-32-8	Inhalation	Cancer du tractus respiratoire supérieur, gastrointestinal	ERUi	6,00E-04	(μg/m3)-1	US EPA	2017	hamster	А	1	C1B		Non	/		/	
Benzo[a]pyrène	50-32-8	Ingestion	tumeurs gastriques	ERUo	2,3	(mg/kg/j)-1	Health Canada	2010		Α	1	C1B		Non	/		/	
Benzo[a]pyrène	50-32-8	Ingestion	Cancer de l'estomac et des poumons	ERUo	12	(mg/kg/j)-1	ОЕННА	2002	rat	А	1	C1B		Non	/		/	
Benzo[a]pyrène	50-32-8	Ingestion	Cancer généralisé (foie, estomac,)	CRoral	5,00E-04	mg/kg/j	RIVM	2001	rat	А	1	C1B		Non	/		/	
Benzo[a]pyrène	50-32-8	Ingestion	Cancer du système gastrointestinal	ERUo	1,00E+00	(mg/kg/j)-1	US EPA	2017	Souris	А	1	C1B		Oui	/		/	
Cadmium inorganique	7440-43-9	Inhalation	Cancer de l'appareil respiratoire	ERUi	1,80E-03	(µg/m3)-1	US EPA	1999	homme	B1	1	C1B/M2/R2		Non	/		Non	avr-14
Cadmium inorganique	7440-43-9	Inhalation	Cancer de l'appareil respiratoire	ERUi	9,80E-03	(µg/m3)-1	Health Canada	2010	rats	B1	1	C1B/M2/R2		Non	/		Non	avr-14
Cadmium inorganique	7440-43-9	Inhalation	Cancer de l'appareil respiratoire	ERUi	4,20E-03	(µg/m3)-1	ОЕННА	2002	homme	B1	1	C1B/M2/R2		Non	/		Non	avr-14
Cadmium inorganique	7440-43-9	Ingestion	/	/	/	/	/	/	/	B1	1	C1B/M2/R2		/	/		/	

			Atteintes sur		ERU			Date de	Sujet		Classification		_	Choix Note		Expertise colle	ctive national	e
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction / révision	d'étude	US EPA	IARC	Union européenne	Commentaires	2014	ANSES	Date	INERIS	Date
Mercure, élément	7439-97-6	Inhalation	/	/	/	/	/	/	/	D (élément mercure) et C (chlorure de mercure et méthylmercur e)	3 (mercure et composés inorganiques) et 2B (méthylmercu re)	R1B		/	/		/	
Mercure Inorganique	Oxyde de mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7	Ingestion	/	/	/	/	/	/	/	D (élément mercure) et C (chlorure de mercure et méthylmercur e)	3 (mercure et composés inorganiques) et 2B	R1B		/	/		/	
Arsenic inorganique	7440-38-2	Inhalation	Cancer des poumons	ERUi	4,30E-03	(μg/m3)-1	US EPA	1998	homme	А	1	C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic : non classé cancérigène.		Non	/		Oui	2010
Arsenic inorganique	7440-38-2	Inhalation	Cancer des poumons	ERUi	1,50E-03	(μg/m3)-1	OMS	1999	Homme	А	1	C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic: non classé cancérigène.		Non	/		Non	2010
Arsenic inorganique	7440-38-2	Inhalation	Cancer des poumons	ERUi	6,40E-03	(μg/m3)-1	Health Canada	2010	homme	А	1	C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic : non classé cancérigène.		Non	/		Non	2010
Arsenic inorganique	7440-38-2	Inhalation	Cancer des poumons	ERUI	3,30E-03	(μg/m3)-1	ОЕННА	2009	rat	А	1	C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic : non classé cancérigène.		Non	/		Non	2010
Arsenic inorganique	7440-38-2	Inhalation	/	/	1,50E-04	(μg/m3)-1	TCEQ	2012	/	А	1	C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic: non classé cancérigène.		Oui	Oui	sept-15	/	2010

					ERU			Date de			Classification					Evpertise colle	ective national	
Substance	N° CAS	Exposition	Atteintes sur l'organisme	Nom	Valeur	Unité	Organisme	construction /	Sujet d'étude	US EPA	IARC	Union	Commentaires	Choix Note 2014	ANSES	Date	INERIS	Date
Arsenic inorganique	7440-38-2	Ingestion	Cancer de la peau	ERUo	1,5	(mg/kg/j)-1	US EPA	révision	homme	A	1	européenne C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses		Oui	/	Date	Oui	2010
												sels mais l'arsenic : non classé cancérigène. C1A pour le						
Arsenic inorganique	7440-38-2	Ingestion	Cancer de la peau	ERUo	1,5	(mg/kg/j)-1	ОЕННА	2009	rat	А	1	pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic : non classé cancérigène.		Non	/		Oui	2010
Arsenic inorganique	7440-38-2	Ingestion	Cancer de la peau	ERUo	1,8	(mg/kg/j)-1	Health Canada	2010	homme	А	1	C1A pour le pentoxyde de diarsenic, trioxyde de diarsenic, arséniate de triéthyle, l'acide arsénique et ses sels mais l'arsenic : non classé cancérigène.		Non	/		Non	2010
Sélénium et ses composés	7782-49-2	Inhalation	/	/	/	/	/	/	/	/	/	/	/	/	/		/	
Sélénium et ses composés	7782-49-2	Ingestion	/	/	/	/	/	/	/	/	/	/	/	/	/		/	
Plomb et ses composés	7439-92-1	Inhalation	Cancer des reins	ERUi	1,20E-05	(μg/m3)-1	ОЕННА	2011	rat	B2	2B pour le plomb, 2A pour les composés organiques et 3 pour les composés ingraaniques	/	Plomb et composés (inorganique)	Oui	/		Oui	2013
Plomb et ses composés	7439-92-1	Ingestion	Cancer des reins	ERUo	8,50E-03	(mg/kg/j)-1	ОЕННА	2011	rat	B2	2B pour le plomb, 2A pour les composés organiques et 3 pour les composés inorganiques	/	Plomb et composés (inorganique)	Oui	/		Oui	2013
Antimoine Antimoine	7440-36-0 7440-36-0	Inhalation Ingestion	/	/	/	/,	/	/	/	/	/	/		/	/		/	
Chrome III	16065-83-1	Inhalation	//	/	//	//	//	/	/	<i>D</i>	3	//		/	/		//	
Chrome III	16065-83-1	Ingestion	/	/	/	/	/	/	/	D	3	/		/	/		/	

			Atteintes sur		ERU			Date de	Sujet		Classification			Choix Note		xpertise colle	ective national	e
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction / révision	d'étude	US EPA	IARC	Union européenne	Commentaires	2014	ANSES	Date	INERIS	Date
Chrome VI (composés du)	18540-29-9	Inhalation	Cancer pulmonaire	ERUi	1,20E-02	(µg/m3)-1	US EPA	1998	homme	А	1	composés de chrome VI, à l'exception du chromate de		Non	/		Non	2018
Chrome VI (composés du)	18540-29-9	Inhalation	Cancer pulmonaire	ERUi	4,00E-02	(µg/m3)-1	OMS	2000	homme	А	1	harvum C1B pour composés de chrome VI, à l'exception du chromate de barvum C1B pour		Non	/		Non	2018
Chrome VI (composés du)	18540-29-9	Inhalaton	Cancer pulmonaire	ERUi	4,00E-02	(µg/m3)-1	OMS CICAD	2013	homme	A	1	C1B pour composés de chrome VI, à l'exception du chromate de barvum C1B pour		Non	/		Oui	2018
Chrome VI (composés du)	18540-29-9	Inhalation	Non précisé	ERUi	4,00E-02	(µg/m3)-1	RIVM	2001	homme	A	1	C1B pour composés de chrome VI, à l'exception du chromate de barvum C1B pour		Non	/		Non	2018
Chrome VI (composés du)	18540-29-9	Inhalation	Cancer pulmonaire	ERUi	7,58E-02	(µg/m3)-1	Health Canada	1993	homme	A	1	c1B pour composés de chrome VI, à l'exception du chromate de barvum C1B pour		Non	/		Non	2018
Chrome VI (composés du)	18540-29-9	Inhalation	Cancer pulmonaire	ERUi	1,50E-01	(µg/m3)-1	ОЕННА	2002	homme	A	1	C1B pour composés de chrome VI, à l'exception du chromate de barvum C1B pour		Non	/		Non	2018
Chrome VI et composés particulaire	18540-29-9	Inhalation	Cancer pulmonaire	ERUi	6,00E-03	(µg/m3)-1	IPCS	2013	/	A	1	c1B pour composés de chrome VI, à l'exception du chromate de barvum C1B pour		Oui	Oui	2015	/	2018
Chrome VI (composés du)	18540-29-9	Ingestion	Cancer de l'estomac	ERUo	5,00E-01	(mg/kg/j)-1	ОЕННА	2011	souris	A	1	c1B pour composés de chrome VI, à l'exception du chromate de harvum C1B pour le		Oui	Oui	2012	Oui	2018
Cobalt	7440-48-4	Inhalation	/	/	/	/	/	/	/	/	2B	sulfate de cobalt, nitrate de cobalt, dichlorure de cobalt, carbonate de cobalt et acétate de		/	/		/	
Cobalt	7440-48-4	Ingestion	/	/	/	/	/	/	/	/	2В	cobalt C1B pour le sulfate de cobalt, nitrate de cobalt, dichlorure de cobalt, carbonate de cobalt et acétate de		/	/		/	
Cuivre	7440-50-8	Inhalation	/	/	/	/	/	/	/	D	3 (8- hydroxyquinoli ne de cuivre)	/		/	/		/	
Cuivre	7440-50-8	Ingestion	/	/	/	/	/	/	/	D	3 (8- hydroxyquinoli ne de cuivre)			/	/		/	
Manganese Manganese	7439-96-5 7439-96-5	Inhalation Ingestion	/	/	/	/	/	/	/	D D	/	/		/	/			

			Atteintes sur		ERU			Date de	Sujet		Classification	n		Choix Note		Expertise coll	ective national	e
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction / révision	d'étude	US EPA	IARC	Union européenne	Commentaires	2014	ANSES	Date	INERIS	Date
Nickel et composés solubles	Nickel métal (7440-02-0) Chlorure de nickel (7718-54-9) Sulfate de nickel (7786-81-4) Nitrate de nickel	Inhalation	Cancer des poumons	ERUi	2,60E-04	(μg/m3)-1	ОЕННА	2011	homme		2B	C2	Nickel metal et composés solubles tels que Chlorure de nickel (7718-54-9) Sulfate de nickel (7786-81-4 Nitrate de nickel (13138-45-9) Actétate de nickel (373-02-4)	Non	/		Oui	2017
Nickel et composés solubles	(13138-45-9) Actétate de nickel	Inhalation	Cancer des poumons	ERUi	3,80E-04	(µg/m3)-1	OMS	2000	homme		2B	C2	Nickel métal	Non	/		Non	2017
Nickel et composés solubles	(373-02-4)	Inhalation	Cancer des poumons	ERUi	7,10E-04	(μg/m3)-1	Health Canada	1996	homme		2B	C2	Nickel soluble, principalement sulfate et chlorure	Non	/		Non	2017
Nickel	solubles	Inhalation	Cancer des poumons	ERUi	1,70E-04	(µg/m3)-1	TCEQ	2011			2B	C2		Oui	Oui	2015		
Nickel et composés solubles	Nickel métal (7440-02-0) Chlorure de nickel (7718-54-9) Sulfate de nickel (7786-81-4) Nitrate de nickel (13138-45-9) Actétate de nickel (373-02-4) autres composés solubles	Ingestion	/	/	/	/	/	/	/		2B	C2		/	/		/	
Zinc et composés	7440-66-6	Inhalation	/	/	/	/	/	/	/	D	/	/		/	/		/	
Zinc et composés	7440-66-6	Ingestion	/	/	/	/	/	/	/	D	/	/		/	/		/	

Substance	N° CAS	Exposition	Atteintes sur l'organisme	Nom	VTR Valeur	Unité	Organisme	Date de construction	Sujet d'étude	Incertitude (facteur de	Commentaires	Log Kow	BCF (L/kg)	Choix Note 2014	ANSES	Expertise collective Date INERIS	Date
Poussières	/	Inhalation	Effets sur le système respiratoire	Valeur réglementaire	2,50E-02	mg/m3	Art. R221-1 du CdE	2010	/	/	Valeur limite PM2,5 en moyenne annuelle civile	/	/	Non	/	/	
Dioxyde de oufre	7446-09-5	Inhalation	Système respiratoire	Valeur réglementaire	5,00E-02	mg/m3	Art. R221-1 du CdE	2010	/	/	Objectif de qualité en moyenne annuelle civile	/	/	Non	/	/	
xydes d'azote	10102-43-9 10102-44-0	Inhalation	Système repiratoire	Valeur réglementaire	4,00E-02	mg/m3	Art. R221-1 du CdE	2010	/	/	Valeur limite pour la protection de la santé humaine en moyenne annuelle civile	/	/	Non	/	/	
1onoxyde de arbone	630-08-0	Inhalation		Valeur réglementaire	10	mg/m3	Art. R221-1 du CdE	2010	/	/	Valeur limite pour la protection de la santé humaine pour le maximum journalier de la moyenne glissante sur huit heures	/	/	Non	/	/	
cétaldéhyde	75-07-0	Inhalation	Atteintes nasales	RfC	9,00E-03	mg/m3	US EPA	1991	rat	1 000	/	0,45	Calculé: 3,16	Non	/	Non	2017
Acétaldéhyde	75-07-0	Inhalation	Atteintes nasales	TC	3,00E-01	mg/m3	OMS IPCS	1995	rat	1000	/	0,45	Calculé: 3,16	Non	/	Non	2017
Acétaldéhyde	75-07-0	Inhalation	Atteintes nasales	CA	3,90E-01	mg/m3	Health Canada	2000	rat	100	/	0,45	Calculé: 3,16	Non	/	Non	2017
Acétaldéhyde	75-07-0	Inhalation	Atteintes du système respiratoire	REL	1,40E-01	mg/m3	ОЕННА	2008	rat	300	/	0,45	Calculé: 3,16	Non	/	Non	2017
cétaldéhyde	75-07-1	Inhalation	Epithélium olfactif	VGAI	1,60E-01	mg/m3	ANSES	2014	Rat	75	VGAI long terme subchronique	0,45	Calculé : 3,16	Oui	/	Oui	2017
Acétaldéhyde	75-07-0	Ingestion	/	/	/	/	/	/	/	/	/	0,45	Calculé: 3,16	/	/	/	
Acroléine	107-02-8	Inhalation	Lésions de l'épithélium respiratoire supérieur	VGAI	8,00E-04	mg/m3	ANSES	2013	Rat	75	Valeur Guide Air Intérieur long terme	-1,1	Poissons: 344	Oui	/	Oui	2015
Acroléine	107-02-8	Inhalation	Effets sur le système nasal	RfC	2,00E-05	mg/m3	US EPA	2003	Rat	1000		-1,1	Poissons: 344	Non	/	Non	2015
croléine	107-02-8	Inhalation	Irritation des yeux	VG	5,00E-02	mg/m3	OMS	2002	Rat	Non précisé	Valeur guide - sur 30 min	-1,1	Poissons: 344	Non	/	/	
croléine	107-02-8	Inhalation	Effets sur le système nasal	TC	4,00E-04	mg/m3	Health Canada	2000	Rat	100	/	-1,1	Poissons: 344	Non	/	Non	2015
croléine	107-02-8	Inhalation	Effets sur le système respiratoire	REL	3,50E-04	mg/m3	ОЕННА	2008	Rat	200	/	-1,1	Poissons: 344	Non	/	Non	2015
Phénol	108-95-2	Inhalation	Système circulatoire, reins, système nerveux	REL	2,00E-01	mg/m3	ОЕННА	2003	Souris, rat, sing	100		1,47	Poissons: 17,5	Oui	/	/	
hénol	108-95-2	Inhalation	Système circulatoire, reins, système nerveux	(provisoire) TCA	2,00E-02	mg/m3	RIVM	2000	Souris, rat, sing	1000	Données provisoires	1,47	Poissons: 17,5	Non	/	/	
Benzène	71-43-2	Inhalation	Atteintes du système sanguin et immunitaire	RfC	3,00E-02	mg/m3	US EPA	2003	homme	300	/	2,13	Poissons : <10; Mollusque: <1	Non	/	/	
Benzène	71-43-2	Inhalation	Effets sur le système immunitaire	MRL	9,80E-03	mg/m3	ATSDR	2007	homme	10	/	2,13	Poissons : <10; Mollusque: <1	Non	/	/	
3enzène	71-43-2	Inhalation	Système sanguin	REL	3,00E-03	mg/m3	ОЕННА	2014	homme	200	/	2,13	Poissons : <10; Mollusque: <1	Non	/	/	
enzène	71-43-2	Inhalation	Effets sur le système immunitaire	VTR	1,00E-02	mg/m3	ANSES	2008	/	/	/	2,13	Poissons : <10; Mollusque: <1	Oui	/	/	
Formaldehyde	50-00-0	Inhalation	Nez	MRLch	1,00E-02	mg/m3	ATSDR	1999	homme	30		0,35	Organismes aquatiques : pas de bioaccumulati	Non	Non	févr-18 Non	févr-10
Formaldehyde	50-00-0	Inhalation	Nez, voies aériennes	REL	9,00E-03	mg/m3	ОЕННА	2008	homme	10		0,35	on Organismes aquatiques : pas de bioaccumulati	Non	Non	févr-18 Oui	févr-10
Formaldehyde	50-00-0	Inhalation	Irritation oculaire	/	1,23E-01	mg/m3	ANSES	2018	/	3		0,35	on Organismes aquatiques : pas de bioaccumulati	Oui	Oui	févr-18 /	
Naphtalène	91-20-3	Inhalation	Nez et poumons	VTR	3,70E-02	mg/m3	ANSES	2013	rat	250		3,7	on Poissons: 168 à 427 ; Mollusques : 27 à 62	Oui	Oui	oct-13 Oui	2014
Naphtalène	91-20-3	Inhalation	Nez	RfC	3,00E-03	mg/m3	US-EPA	1998	Souris	3000		3,7	Poissons: 168 à 427; Mollusques: 27 à 62	Non	/	Non	2014

Substance	N° CAS	Exposition	Atteintes sur		VTR		Organisme	Date de	Sujet	Incertitude	Commentaires	Log Kow	BCF (L/kg)	Choix Note		Expertise	e collective	
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction	d'étude	(facteur de	Commentaires	Log Kow	BCF (L/Kg)	2014	ANSES	Date	INERIS	Date
Naphtalène	91-20-3	Inhalation	Nez et poumons	MRLch	3,50E-03	mg/m3	ATSDR	2005	Rat, souris	300		3,7	Poissons: 168 à 427 ; Mollusques : 27 à 62	Non	/		Non	2014
Naphtalène	91-20-3	Inhalation	Nez et poumons	REL	9,00E-03	mg/m3	ОЕННА	2012	Souris	1000		3,7	Poissons: 168 à 427 ; Mollusques : 27 à 62	Non	/		Non	2014
Naphtalène	91-20-3	Ingestion	Poids	RfD	2,00E-02	mg/kg/j	US-EPA	1998	Rat	3000		3,7	Poissons: 168 à 427 ; Mollusques : 27 à 62	Oui	/		Oui	2014
Naphtalène	91-20-3	Ingestion	Poids	DJT	2,00E-02	mg/kg/j	Santé Canada	2010	Rat	3000		3,7	Poissons: 168 à 427 ; Mollusques : 27 à 62	Non	/		Non	2014
Naphtalène	91-20-3	Ingestion	Non précisé	TDI	4,00E-02	mg/kg/j	RIVM	2001	Non précisé	Non précisé		3,7	Poissons: 168 à 427; Mollusques: 27 à 62	Non	/		Non	mars-11

Cubat	No CAC	Evma-iti	Atteintes sur		VTR		0	Date de	Sujet	Incertitude	Commontation	1 1/	DCE (L (less)	Choix Note		Expertise	collective	
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction	d'étude	(facteur de	Commentaires	Log Kow	BCF (L/kg)	2014	ANSES	Date	INERIS	Date
Cadmium norganique	7440-43-9	Inhalation	Effets sur le système rénal	VTR	4,50E-04	mg/m3	ANSES	2012	homme	-	/	/	Poissons : 229; Invertébrés: 994	Oui	/		Oui	2013
Cadmium norganique	7440-43-9	Inhalation	Cancer de l'appareil respiratoire	VTR	3,00E-04	mg/m3	ANSES	2012	rat	25	VTR à seuil pour des effets cancérogènes	/	Poissons : 229; Invertébrés: 994	Oui	/		Oui	2013
admium organique	7440-43-9	Inhalation	Effets sur le système rénal	MRL	1,00E-05	mg/m3	ATSDR	2012	homme	10	/	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
admium organique	7440-43-9	Inhalation	Effets sur le système rénal et respiratoire	REL	2,00E-05	mg/m3	ОЕННА	2003	homme	30	/	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
admium organique	7440-43-9	Ingestion	Os	VTR	3,50E-04	mg/kg/j	ANSES	2017		-	/	/	Poissons : 229; Invertébrés: 993	Oui	/		/	
admium norganique	7440-43-9	Ingestion	Effets sur le système rénal	RfD	1,00E-03	mg/kg/j	US EPA	1994	homme	10	/	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
admium norganique	7440-43-9	Ingestion	Effets sur le système rénal	MRL	1,00E-04	mg/kg/j	ATSDR	2012	homme	3	/	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
admium norganique	7440-43-9	Ingestion	Non présenté	DJT	8,30E-04	mg/kg/j	OMS	2011	homme	Non précisé	PTMI = 25 μg/kg	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
admium organique	7440-43-9	Ingestion	Effets sur le système rénal	TDI	5,00E-04	mg/kg/j	RIVM	2001	Non précisé	2	/	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
admium norganique	7440-43-9	Ingestion	Non présenté	REL	5,00E-04	mg/kg/j	ОЕННА	2003	homme	10	/	/	Poissons : 229; Invertébrés: 994	Non	/		Non	2013
Cadmium norganique	7440-43-9	Ingestion	Reins	DJT provisoire	1,00E-03	mg/kg/j	Health Canada	2010			DRAFT - ne pas retenir pour quantification des risques	/	Poissons : 229; Invertébrés: 995	Non	/		/	
admium iorganique	7440-43-9	Ingestion	Non présenté	TDI	3,60E-04	mg/kg/j	EFSA	2011	homme	-	DHT = 2,5E-3 mg/kg/sem	/	Poissons : 229; Invertébrés:	Non	Oui	2011	Oui	2013

Substance	N° CAS	Exposition	Atteintes sur		VTR		Organisme	Date de	Sujet	Incertitude	Commentaires	Log Kow	BCF (L/kg)	Choix Note		Expertise		
Mercure élémentaire	7439-97-6	Inhalation	l'organisme Système nerveux, mémoire, autonomie	Nom RfC	3,00E-04	Unité mg/m3	US EPA	1995	d'étude homme	(facteur de	Mercure élémentaire	/	Aucune donnée pour le mercure élémentaire (les seules données existantes concernent les formes organiques et inorganiques)	2014 Non	ANSES	Date	INERIS Non	Date 2014
Mercure élémentaire	7439-97-6	Inhalation	Système nerveux	MRLch	2,00E-04	mg/m3	ATSDR	2001	homme	30	Mercure élémentaire	/	Aucune donnée pour le mercure élémentaire (les seules données existantes concernent les formes organiques et inorganiques)	Non	/		Non	2014
Mercure élémentaire	7439-97-6	Inhalation	Système nerveux central	TCA	2,00E-04	mg/m3	RIVM	2001	homme	30	Mercure élémentaire (Voir aussi Valeur-guide pour l'environnement intérieur: TCA = 5E-5 mg/m3)	/	Aucune donnée pour le mercure élémentaire (les seules données existantes concernent les formes organiques et inorganiques)	Non	/		Non	2014
Mercure élémentaire	7439-97-6	Inhalation		СТ	2,00E-04	mg/m3	OMS CICAD	2013			Mercure élémentaire et inorganique	/	Aucune donnée pour le mercure élémentaire (les seules données existantes concernent les formes organiques et inorganiques)	Non	/		Non	2014
Mercure élémentaire	7439-97-6	Inhalation	Système nerveux	REL	3,00E-05	mg/m3	ОЕННА	2008	homme	300	Mercure élémentaire et inorganique	/	Aucune donnée pour le mercure élémentaire (les seules données existantes concernent les formes organiques et inorganiques)	Oui	/		Oui	2014
Mercure inorganique	Oxyde de mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7 Chlorure mercureux : 10112-91-1	Ingestion	Reins	TDI	2,00E-03	mg/kg/j	OMS	2005	rat	100	Mercure inorganique	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,2	Non	/		Non	2014

Cubatanaa	NO CAC	Exposition	Atteintes sur		VTR		Ouganisma	Date de	Sujet	Incertitude	Commontaines	Lag Vanu	DCE (L (lee)	Choix Note		Expertise	collective	
Substance	N° CAS Oxyde de	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction	d'étude	(facteur de	Commentaires	Log Kow	BCF (L/kg)	2014	ANSES	Date	INERIS	Date
Mercure inorganique	mercure: 1908-53-2 Sulfure de mercure: 1344-48-5 Chlorure mercurique: 7487-94-6 Chlrorure mercureux:	Ingestion	Reins	Vtr	6,60E-04	mg/kg/j	INERIS	2013	rat	Non précisé	Mercure inorganique	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,1	Non	/		Oui	2014
Mercure inorganique	10xyde de mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7 Chlorure mercureux : 10xyde de 1	Ingestion	Système immunitaire, reins	RfD	3,00E-04	mg/kg/j	US EPA	1995	rat	1000	Uniquement le chlorure de mercure	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,2	Non	/		Non	2014
Mercure inorganique	mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7 Chlorure mercureux : 10xy2e04e	Ingestion	Reins	TDI	2,00E-03	mg/kg/j	RIVM	2001	rat	100	Mercure inorganique	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,2	Non	/		Non	2014
Mercure inorganique	mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7 Chlorure mercureux :	Ingestion	Reins	ΤĽΩ	2,00E-03	mg/kg/j	OMS CICAD	2003			Mercure inorganique	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,2	Non	/		Non	2014
Mercure inorganique	10xybe del mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7 Chlorure mercureux :	Ingestion	Reins	DJΤ	3,00E-04	mg/kg/j	Health Canada	2010			Mercure inorganique	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,2	Non	/		Non	2014
Mercure inorganique	10xyde de mercure : 21908-53-2 Sulfure de mercure : 1344-48-5 Chlorure mercurique : 7487-94-7 Chlorure mercureux : 10112-91-2	Ingestion	/	ADI	5,70E-04	mg/kg/j	EFSA	2012	/	/	Mercure inorganique 4 μg/kg/sm	/	Poissons: 1 800 à 5 700 Plantes: 0,02- 0,3	Oui	Oui	2016	/	2014
Arsenic inorganique	7440-38-2	Inhalation	Effets sur les poumons	TCA	1,00E-03	mg/m3	RIVM	2001	homme	10	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 1	Non	/		/	
Arsenic inorganique	7440-38-2	Inhalation	Effets sur le système nerveux	REL	1,50E-05	mg/m3	ОЕННА	2008	homme	30	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 1	Oui	/		Oui	2010

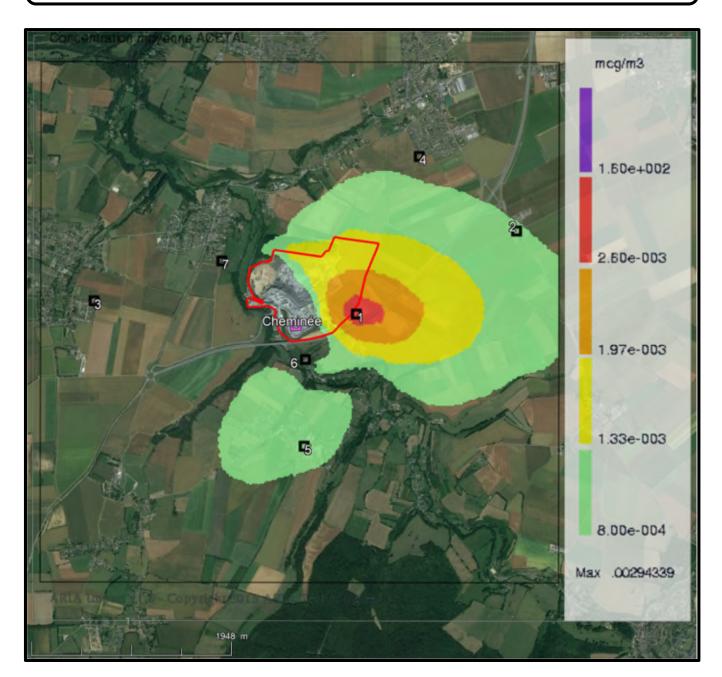
Substance	N° CAS	Exposition	Atteintes sur		VTR		Organisme	Date de	Sujet	Incertitude	Commentaires	Log Kow	BCF (L/kg)	Choix Note		Expertise	collective	
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction	d'étude	(facteur de	Commentanes	LOG KOW	BCF (L/Kg)	2014	ANSES	Date	INERIS	Date
Arsenic inorganique	7440-38-2	Ingestion	Effets sur la peau (lésions cutanées)	TDI	4,50E-04	mg/kg/j	FoBiG	2009	homme	5	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 0	Oui	/		Oui	2010
Arsenic inorganique	7440-38-2	Ingestion	Effets sur la peau	RfD	3,00E-04	mg/kg/j	US EPA	1993	homme	3	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 1	Non	/		Non	2010
Arsenic inorganique	7440-38-2	Ingestion	Effets sur la peau	MRLch	3,00E-04	mg/kg/j	ATSDR	2007	homme	3	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 1	Non	/		Non	2010
Arsenic inorganique	7440-38-2	Ingestion	Effets sur le système nerveux	REL	3,50E-06	mg/kg/j	ОЕННА	2008	homme	30	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 1	Non	/		Non	2010
Arsenic inorganique	7440-38-2	Ingestion	Effets sur la peau	TDI	1,00E-03	mg/kg/j	RIVM	2001	homme	2	/	0,68	Poissons: 4; Crustacés/mol lusques: 400- 478; Végétaux : < 1	Non	/		Non	2010
Sélénium et ses composés	7782-49-2	Inhalation	Système gastrointestinal, système cardiovasculaire, système nerveux	REL	2,00E-02	mg/m3	ОЕННА	2001	Homme	3	Extrapolation voie orale	/	Poissons: 54 (0,5 à 5 333)	Oui	/		Non	sept-11
Sélénium et ses composés	7782-49-2	Ingestion	Intoxication au sélénium	RfD	5,00E-03	mg/kg/j	US-EPA	1991	Homme	3		/	Poissons: 54 (0,5 à 5 333)	Oui	/		Oui	sept-11
Sélénium et ses composés	7782-49-2	Ingestion	Intoxication au sélénium	MRLch	5,00E-03	mg/kg/j	ATSDR	2003	Homme	3		/	Poissons: 54 (0,5 à 5 333)	Non	/		Non	sept-11
Sélénium et ses composés	7782-49-2	Ingestion	Intoxication au sélénium	REL	5,00E-03	mg/kg/j	ОЕННА	2003	Homme	3		/	Poissons: 54 (0,5 à 5 333)	Non	/		Non	sept-11

Substance	N° CAS	Exposition	Atteintes sur		VTR		Organisme	Date de	Sujet	Incertitude	Commentaires	Log Kow	BCF (L/kg)	Choix Note		Expertise	collective	
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction	d'étude	(facteur de	Commentaires	LOG KOW	BCF (L/Kg)	2014	ANSES	Date	INERIS	Date
Plomb et ses composés	7439-92-1	Inhalation	Système rénal, nerveux et sanguin	VTR	9,00E-04	mg/m³	ANSES	2013	Homme	Non précisé	Valeur extrapolée de la valeur plombémie de 15 µg/l de l'ANSES. Etablie pour les adultes, appliquée à toutes les classes d'âge. La plombémie est établie pour une exposition par inhalation et par ingestion. La valeur extrapolée par l'ANSES peut être utilisée pour une exposition uniquement par inhalation.	/	Poissons: 405; Crustacés: 1153; Mollusques: 2279	Oui	Oui	2013	Oui	2016
Plomb et ses composés	7439-92-1	Ingestion	Système rénal, nerveux et sanguin	VTR	6,30E-04	mg/kg/j	ANSES	2013	Homme	Non précisé	Valeur extrapolée de la valeur de plombémie de 15 µg/l. Valable pour les adultes et les enfants. La plombémie est établie pour une exposition par inhalation et par ingestion. La valeur extrapolée par l'ANSES peut être utilisée pour une exposition uniquement par ingestion.	/	Poissons: 405; Crustacés: 1153; Mollusques: 2279	Oui	Oui	2013	Oui	2016
Plomb et ses composés	7439-92-1	Ingestion	Système rénal, nerveux et sanguin	TDI	3,60E-03	mg/kg/j	RIVM	2001	Homme	Non précisé		/	Poissons: 405; Crustacés: 1153; Mollusques: 2279	Non	/		Non	2016
Antimoine	7440-36-0	Inhalation	/	/	/	/	/	/	/	/	Possibilité d'existance de VTR pour des composés de l'antimoine	0,73	Poissons : 40 Végétal: 0,0003 à 0,009	/	/		/	
Antimoine	7440-36-0	Inhalation	Effets sur le système respiratoire	MRLprov	3,00E-04	mg/m³	ATSDR	2017	Non précisé	30	DRAFT - ne pas retenir pour quantification des risques	0,73	Poissons : 40 Végétal: 0,0003 à 0,009	/	/		/	
Antimoine	7440-36-0	Ingestion	Diminution de la longévité, effets cliniques	RfD	4,00E-04	mg/kg/j	US EPA	1987	rat	1 000	/	0,73	Poissons : 40; Végétal: 0,0003 à 0,009	Non	/		/	
Antimoine	7440-36-0	Ingestion	Poids	TDI	6,00E-03	mg/kg/j	OMS	2003	Non précisé	Non précisé	/	0,73	Poissons : 40; Végétal: 0,0003 à 0,009	Oui	Oui	2016	/	
Antimoine	7440-36-0	Ingestion	Poids	TDI	6,00E-03	mg/kg/j	RIVM	2009	rat	1000	/	0,73	Poissons : 40; Végétal: 0,0003 à 0.009	Non	/		/	
Chrome III (composés insolubles)	(7440-47-3) Sels insolubles	Inhalation	Poumons	VTR	2,00E-03	mg/m3	INERIS	2017	rat	90	Chrome métal et insoluble	/	Poissons: 260- 799	Oui	/		Oui	2017
Chrome III (composés insolubles) Chrome III	(16065-83-1) Oxyde de chrome (1308-38-9)	Inhalation	Poumons	СТ	2,70E-02	mg/m3	OMS CICAD	2009			Composés insolubles du Cr III	/	Poissons: 260- 800	Non	/		/	
(composés insolubles)	Autres composés Chrome métal	Inhalation	Reins	TCA	6,00E-02	mg/m3	RIVM	2001	homme	10	Chrome métal et insoluble	/	Poissons: 260- 800	Non	/		Non	2017
Chrome III (composés insolubles)	(7440-47-3) Sels insolubles	Ingestion	Non précisé	RfD	1,5	mg/kg/j	US EPA	1998	rat	1000	Etablie pour les sels insolubles (16065-83-1)	/	Poissons: 260- 800	Oui	/		Oui	2017
Chrome III (composés insolubles)	(16065-83-1) Oxyde de chrome	Ingestion	Non précisé	TDI	5	mg/kg/j	RIVM	2001	rat	100	Chrome métal et insoluble	/	Poissons : 260- 800	Non	/		Non	2017

Substance	N° CAS	Exposition	Atteintes sur		VTR		Organisme	Date de	Sujet	Incertitude	Commentaires	Log Kow	BCF (L/kg)	Choix Note			collective	
Substalle		Exposition	l'organisme	Nom	Valeur	Unité	Organisme	construction	d'étude	(facteur de	Commendates	LUG KUW	DCI (L/Kg)	2014	ANSES	Date	INERIS	Date
Chrome VI (particulaire)	18540-29-9 dichromate de sodium (10588-01-9)	Inhalation	Poumons	RfC	1,00E-04	mg/m3	US EPA	1998	animal	300	Particules de dichromate de sodium	/	Poissons : 1	Non	/		Non	2017
Chrome VI particulaire)	18540-29-9 dichromate de sodium (10588-01-9)	Inhalation	Système respiratoire	REL	2,00E-04	mg/m3	ОЕННА	2008	rat	100	Chrome VI soluble sauf CrO3 Particules de dichromate de sodium	/	Poissons: 1	Non	/		Non	2017
Chrome VI (particulaire)	18540-29-9 dichromate de sodium (10588-01-9)	Inhalation	Poumons	TC	3,00E-05	mg/m3	OMS CICAD	2013	rat	300	Particules de dichromate de sodium	/	Poissons: 1	Oui	/		Oui	2017
Chrome VI	18540-29-9 dichromate de sodium (10588-01-9)	Ingestion	Système gastrointestinal	TDI	9,00E-04	mg/kg/j	OMS CICAD	2013	souris	100	dichromate de sodium dihydraté	/	Poissons: 1	Non	/		Oui	2017
Chrome VI	18540-29-9	Ingestion	Effets gastro- intestinaux	RfD	3,00E-03	mg/kg/j	US EPA	1998	rat	900	Chrome soluble	/	Poissons: 1	Non	/		Non	2017
Chrome VI	18540-29-9 dichromate de sodium (10588-01-9)	Ingestion	Système gastrointestinal	MRL	9,00E-04	mg/kg/j	ATSDR	2012	souris	100	dichromate de sodium dihydraté	/	Poissons: 1	Oui	Oui	2012	Oui	2017
Chrome VI	18540-29-9	Ingestion	Effets sur le système immunitaire	REL	2,00E-02	mg/kg/j	ОЕННА	2008	rat	100	Chrome soluble sauf CrO3	/	Poissons : 1	Non	/		Non	2017
Cobalt	7440-48-4	Inhalation	Système respiratoire	MRLch	1,00E-04	mg/m3	ATSDR	2004	homme	10	/	/	Organismes aquatiques: non bioaccumulabl e Végétaux: non bioaccumulabl	Non	/		/	
Cobalt	7440-48-4	Inhalation	Poumons	TCA	5,00E-04	mg/m3	RIVM	2001	homme	100	/	/	Organismes aquatiques: non bioaccumulabl e Végétaux: non bioaccumulabl	Non	/		/	
Cobalt	7440-48-4	Inhalation	Système respiratoire	СТ	1,00E-04	mg/m3	OMS CICAD	2006			/	/	Orgańismes aquatiques: non bioaccumulabl e Végétaux: non bioaccumulabl	Oui	/		/	
Cobalt	7440-48-4	Ingestion	Cœur	TDI	1,40E-03	mg/kg/j	RIVM	2001	homme	30	/	/	Organismes aquatiques: non bioaccumulabl e Végétaux: non bioaccumulabl	Non	/		/	
Cobalt	7440-48-4	Ingestion	Cœur	VTR	1,50E-03	mg/kg/j	AFSSA	2010	/	/		/	Organismes aquatiques: non bioaccumulabl e Végétaux: non bioaccumulabl	Oui	Oui	2016	/	
Cuivre	7440-50-8	Inhalation	Poumons et système immunitaire	TCA	1,00E-03	mg/m3	RIVM	2001	lapin	100	/	/	Poissons: 184 (20-950); Végétaux: 0,08	Oui	/		/	
Cuivre	7440-50-8	Ingestion	Pas d'organe en particulier	TDI	1,40E-01	mg/kg/j	RIVM	2001	souris	1000	/	/	Poissons: 184 (20-950); Végétaux: 0,08	Oui	/		/	

Substance	N° CAS	Exposition	Atteintes sur l'organisme	Nom	VTR Valeur	Unité	Organisme	Date de construction	Sujet d'étude	Incertitude (facteur de	Commentaires	Log Kow	BCF (L/kg)	Choix Note 2014	ANSES	Expertise Date	collective	Date
Manganese	7439-96-5	Inhalation	Système nerveux	MRLch	3,00E-04	mg/m3	ATSDR	2012	homme	100	Mn inorganique (Poussières Mn respirables)	/	Poissons: 1 000; Crustacés: 5 000; Mollusques: 10000	Oui	Oui	2015	/	Date
Manganese	7439-96-5	Inhalation	Système nerveux, coordination des membres	RfC	5,00E-05	mg/m3	US EPA	1996	homme	1000		/	Poissons: 1 000; Crustacés: 5 000; Mollusques: 10,000	Non	/		Non	2011
Manganese	7439-96-5	Inhalation	Système nerveux, coordination des membres	REL	9,00E-05	mg/m3	ОЕННА	2008	homme	300		/	Poissons: 1 000; Crustacés: 5 000; Mollusques: 10,000	Non	/		Non	2011
Manganese	7439-96-5	Ingestion	Système nerveux central	RfD	1,40E-01	mg/kg/j	US EPA	1996	homme	1		/	Poissons: 1 000; Crustacés: 5 000; Mollusques: 10 000 Poissons: 0,8	Oui	/		Oui	2011
Nickel et composés solubles		Inhalation	Poumons	MRLch	9,00E-05	mg/m3	ATSDR	2005	Rat	30	/	/	à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.01 Poissons: 0,8	Non	/		Oui	2017
Nickel et composés solubles		Inhalation	Poumons	TCA	5,00E-05	mg/m3	RIVM	2001	Rat	100	/	/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.01	Non	/		Non	2017
Nickel et composés solubles	Nickel métal (7440-02-0) Chlorure de nickel (7718-54-9) Sulfate de nickel (7786-81-4)	Inhalation	Poumons	тс	1,80E-05	mg/m3	Health Canada	2010	Rat, souris	1000	Nickel métal uniquement	/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes :	Non	/		Non	2017
Nickel et composés solubles	Nitrate de nickel (13138-45-9) Actétate de nickel (373-02-4) autres composés solubles	Inhalation	Système respiratoire, système hématopoïétique	REL	1,40E-05	mg/m3	ОЕННА	2012	Rat	100	/	/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.01 Poissons: 0,8	Non	/		Non	2017
Nickel et composés solubles		Inhalation	lésions nasales et pulmonaires	тс	3,50E-06	mg/m3	Health Canada	1996	rat	1000	Sulfate de nickel uniquement	/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.02 Poissons: 0,8	Non	/		Non	2017
Nickel		Inhalation	Système respiratoire	VTR	2,30E-04	mg/m3	TCEQ	2011	/	/		/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.03 Poissons: 0,8	Oui	Oui	2015	Non	2017
Nickel et composés solubles		Ingestion	Effets sur la reproduction	TDI	2,80E-03	mg/kg/j	EFSA	2015	rat	100		/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.01	Oui	Oui	2016	Oui	2017

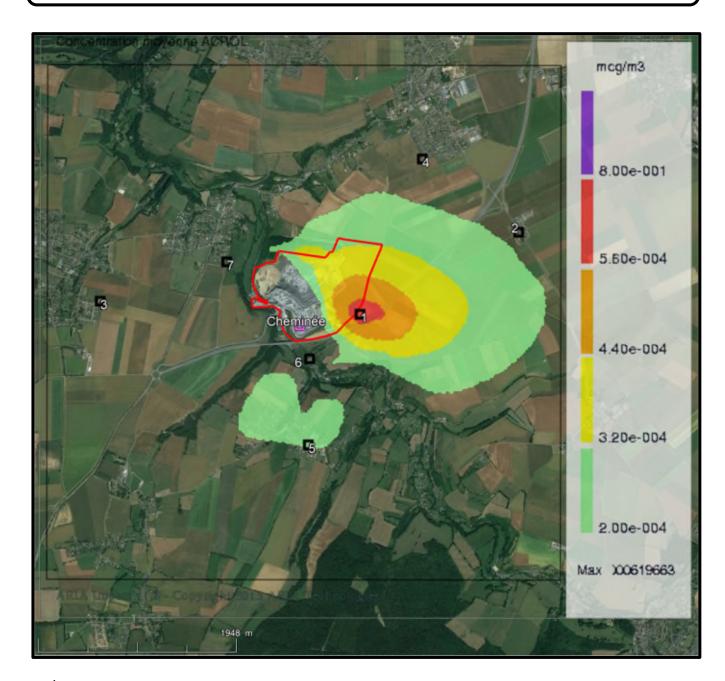
Substance	NO CAS	Evenesities	Atteintes sur	VTR			Date de construction	Sujet Ince	Incertitude	Incertitude		DOT (1 (1)	Choix Note	Expertise collective				
Substance	N° CAS	Exposition	l'organisme	Nom	Valeur	Unité	Organisme		d'étude	(facteur de	Commentaires	Log Kow	BCF (L/kg)	2014	ANSES	Date	INERIS	Date
Nickel et composés solubles	Nickel métal (7440-02-0) Chlorure de nickel	Ingestion	Poids, développement	RfD	2,00E-02	mg/kg/j	US EPA	1996	rat	300		/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0 100 à 0 0,8	Non	/		Non	2017
Nickel et composés solubles	(7718-54-9) Sulfate de nickel (7786-81-4) Nitrate de nickel (13138-45-9) Actétate de nickel	Ingestion	Poids, développement	TDI	1,20E-02	mg/kg/j	OMS	2007	Homme	1		/	Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.01	Non	/		Non	2017
Nickel et composés solubles	(373-02-4) autres composés solubles	Ingestion	Développement	REL	1,10E-02	mg/kg/j	ОЕННА	2012	Rat	100		/	Poissons: U,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes :	Non	/		Non	2017
Nickel et composés solubles		Ingestion	Poids, développement	TDI	5,00E-02	mg/kg/j	RIVM	2001	Rat	100		/	O 002 à 0 01 Poissons: 0,8 à 104 Crustacés : 10 à 39 Mollusques d'eau douce : 2 à 191 Plantes : 0.002 à 0.01	Non	1		Non	2017
Zinc élément	7440-66-6	Inhalation	/		/		/	/	/	/		/	Calculé :	/	/		/	
Zinc élément	7440-66-6	Ingestion	Effets sanguins : diminution de l'hématocrite, de la ferrritine sanguine et de l'activité de la superoxydase dismutase érythrocytaire)	MRL	3,00E-01	mg/kg/j	ATSDR	2005	Homme	3		/	3,162 Calculé : 3,162	Non	/		Non	
Zinc élément	7440-66-6	Ingestion	Effets sanguins : diminution de l'hématocrite, de la ferrritine sanguine et de l'activité de la superoxydase dismutase érythrocytaire)	RfD	3,00E-01	mg/kg/j	US EPA	2005	Homme	3		/	Calculé : 3,162	Oui	/		Non	
Zinc élément	7440-66-6	Ingestion	Non présenté	TDI	5,00E-01	mg/kg/j	RIVM	2001	Homme	Non précisé		/	Calculé : 3,162	Non	/		Non	


ERS CRB - FRESNEY-LE-PUCEUX

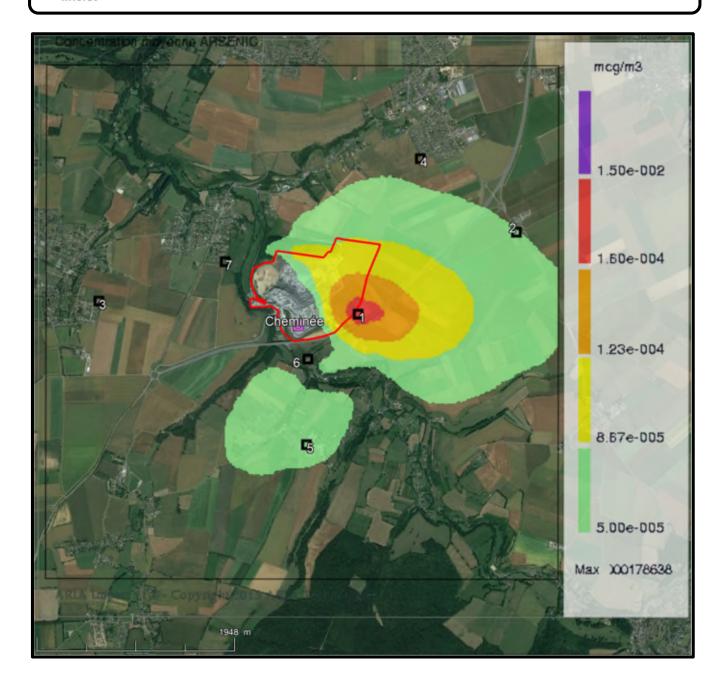
ANNEXE

CARTES DE DISPERSION ATMOSPHERIQUE

KALIES - KAR 19.43 74

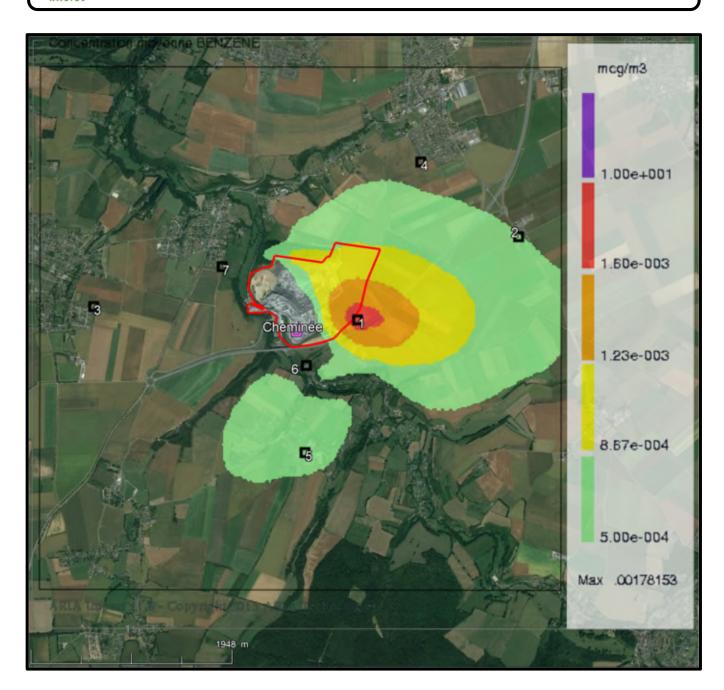

Acétaldéhyde - CMA - μg/m³

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

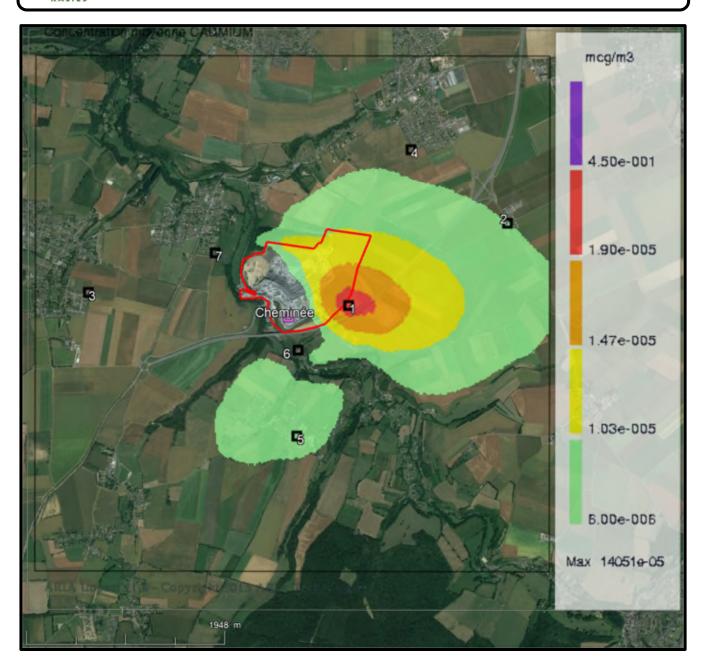

KALIÈS

Acroléine - CMA - μg/m³

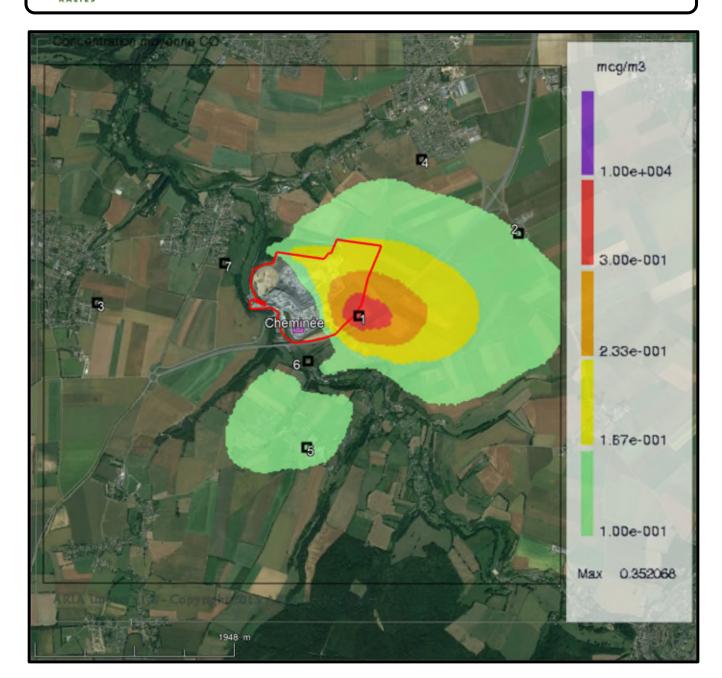
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


Arsenic - CMA - $\mu g/m^3$

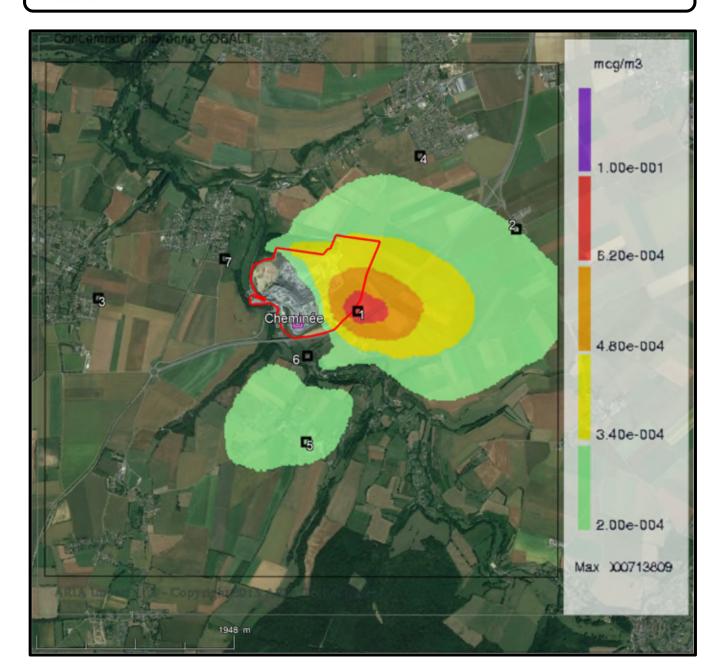
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


KALIÈS

Benzène - CMA - μ g/m³

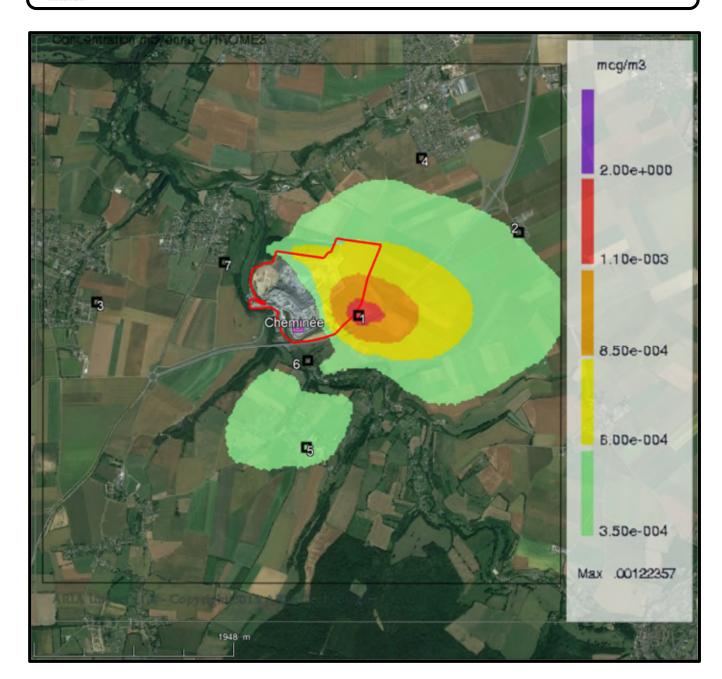

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Cadmium - CMA - μg/m³

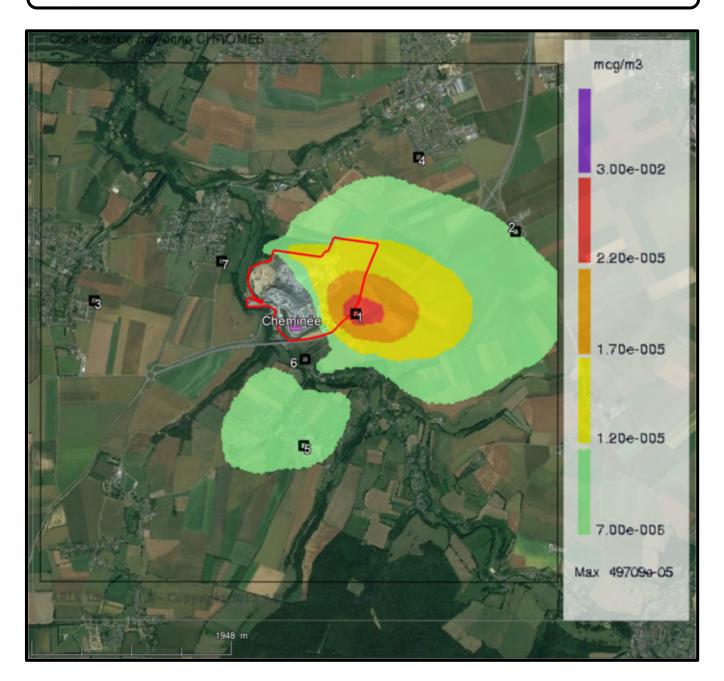

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Monoxyde de carbone - CMA - μ g/m³

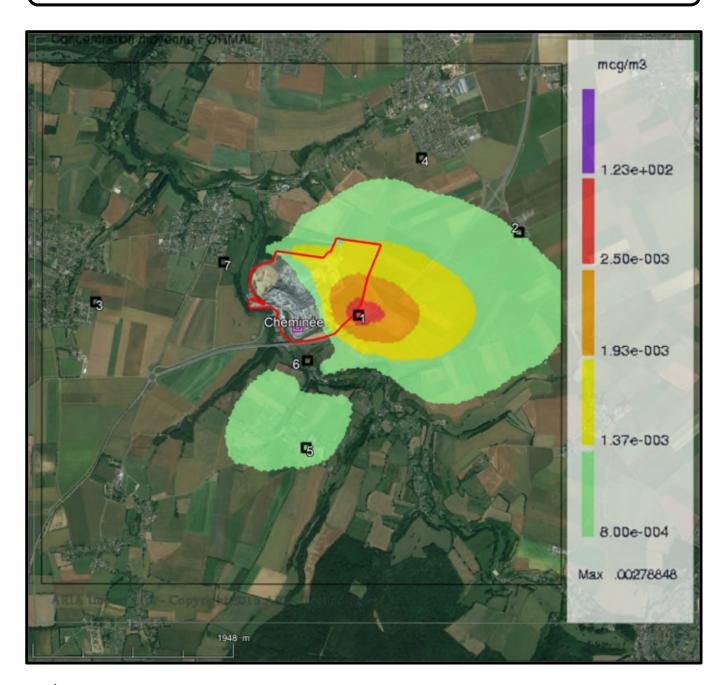
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


Cobalt - CMA - $\mu g/m^3$

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


KALIÈ

Chrome III - CMA - $\mu g/m^3$

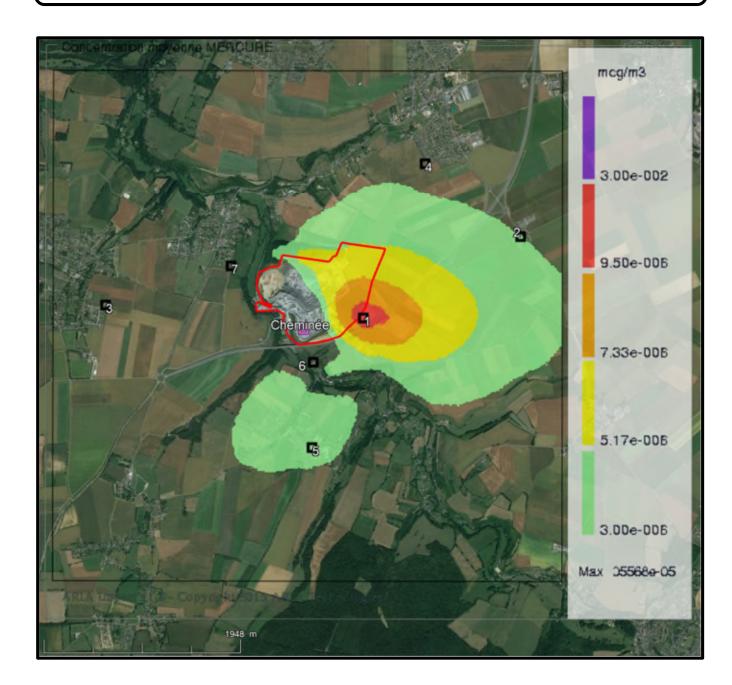

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Chrome VI - CMA - $\mu g/m^3$

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

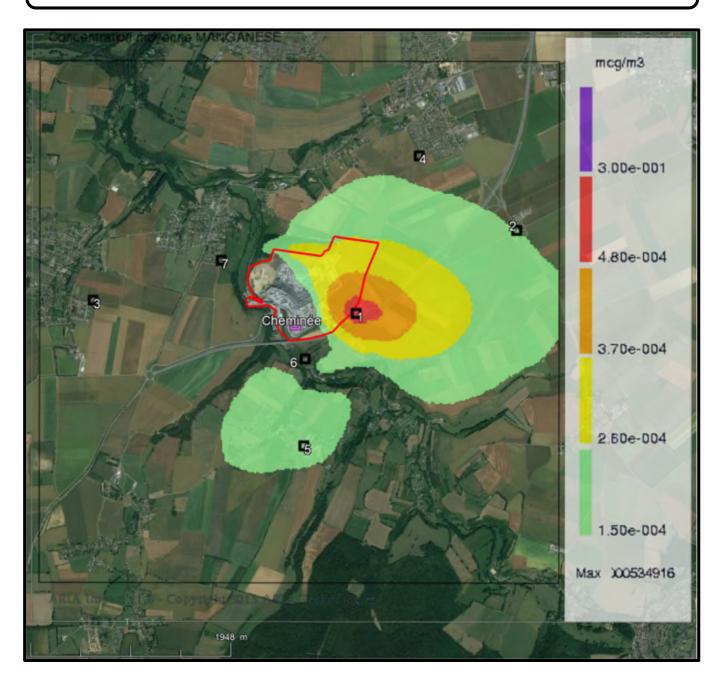
Formaldéhyde - CMA - µg/m³

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

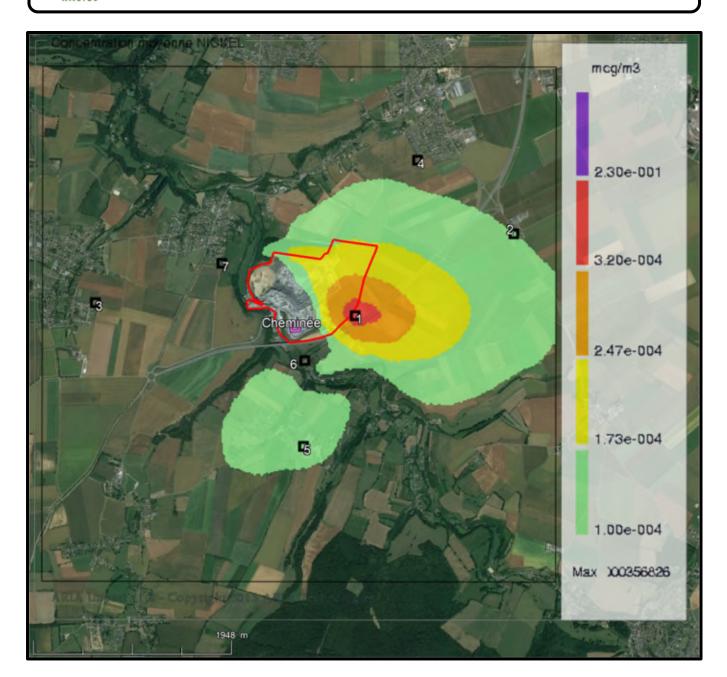

$HAP - CMA - \mu g/m^3$

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

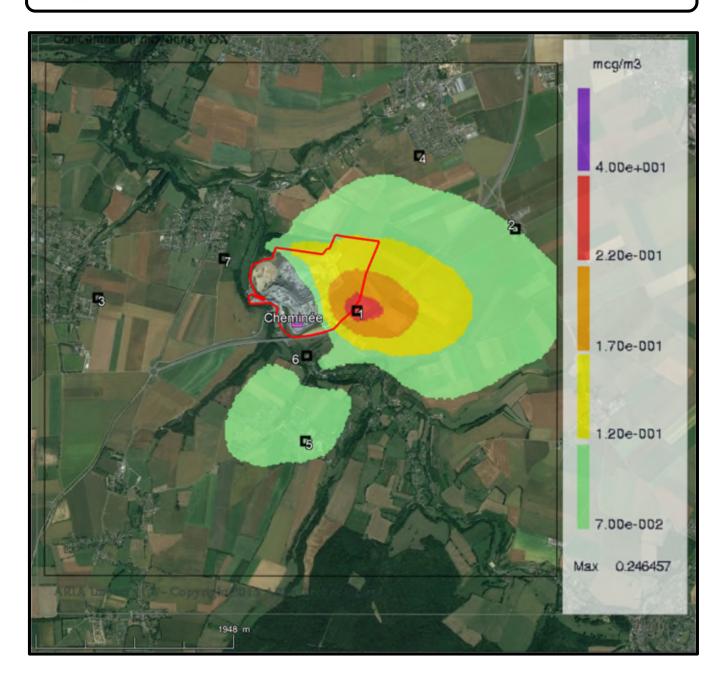
Mercure - CMA - μ g/m³



- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

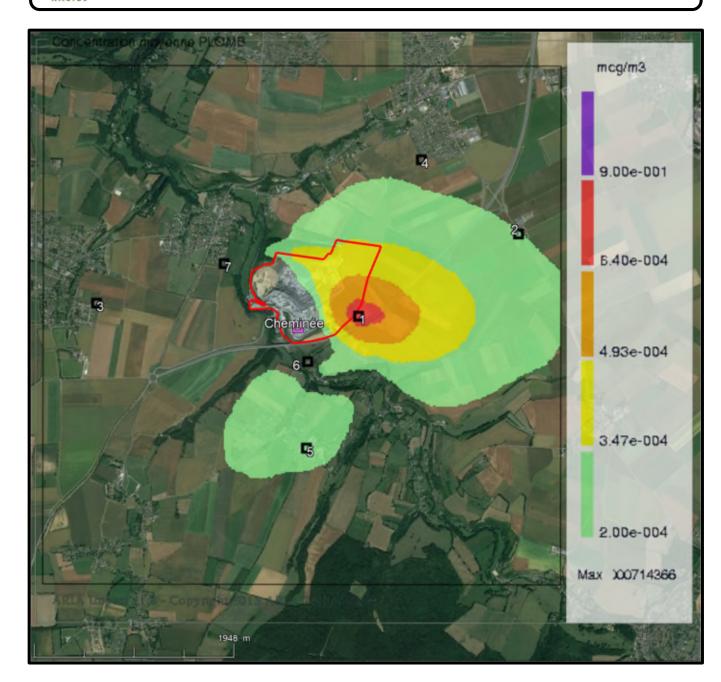

KALIÈS

Manganèse - CMA - $\mu g/m^3$


- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Nickel - CMA - $\mu g/m^3$

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

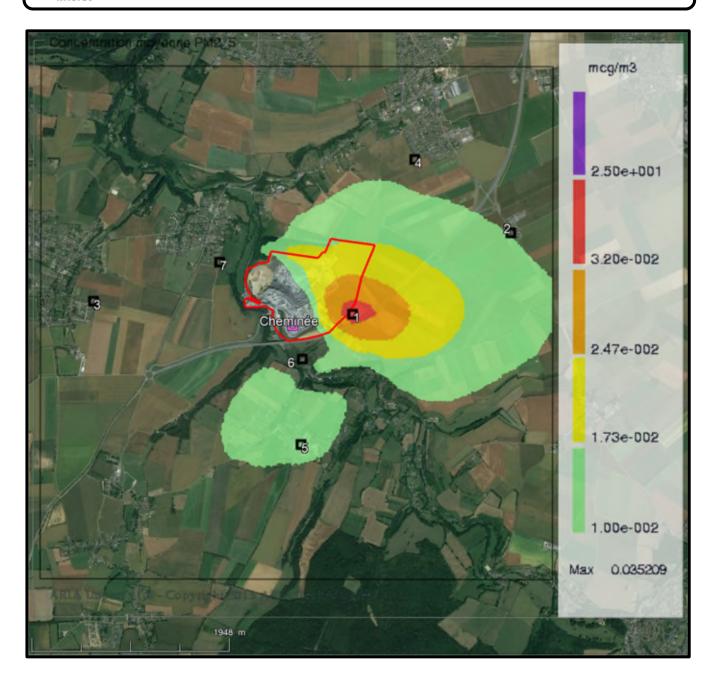

Oxydes d'azote - CMA - µg/m³

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

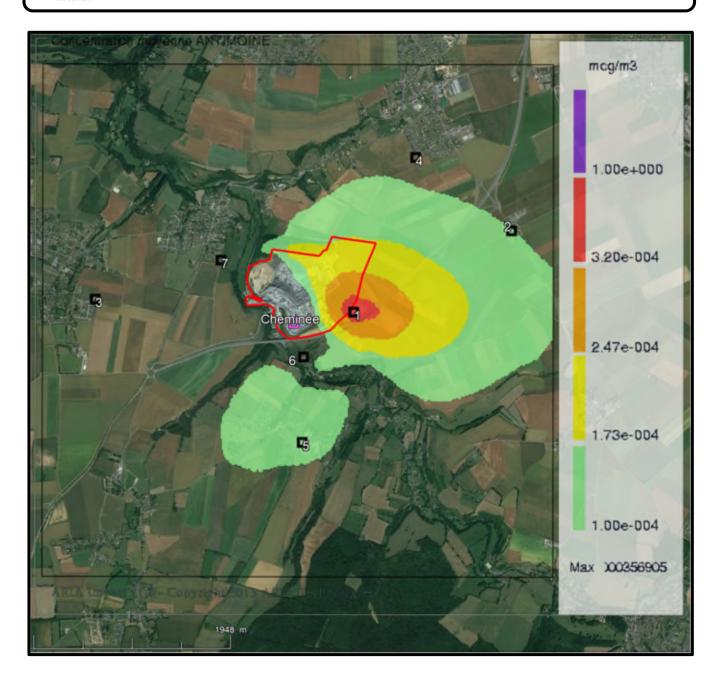
KALIÈ


Plomb - CMA - μg/m³

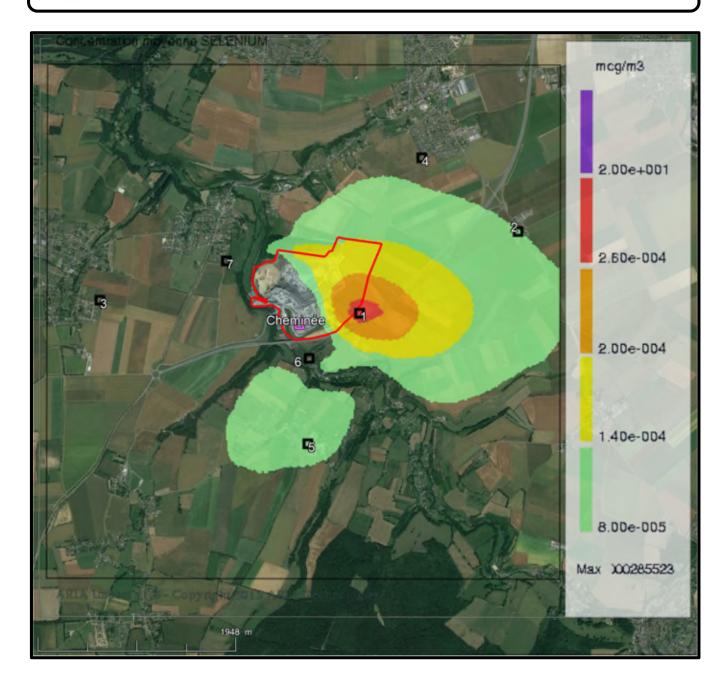
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


KALIÈS

Phénol - CMA - μg/m³

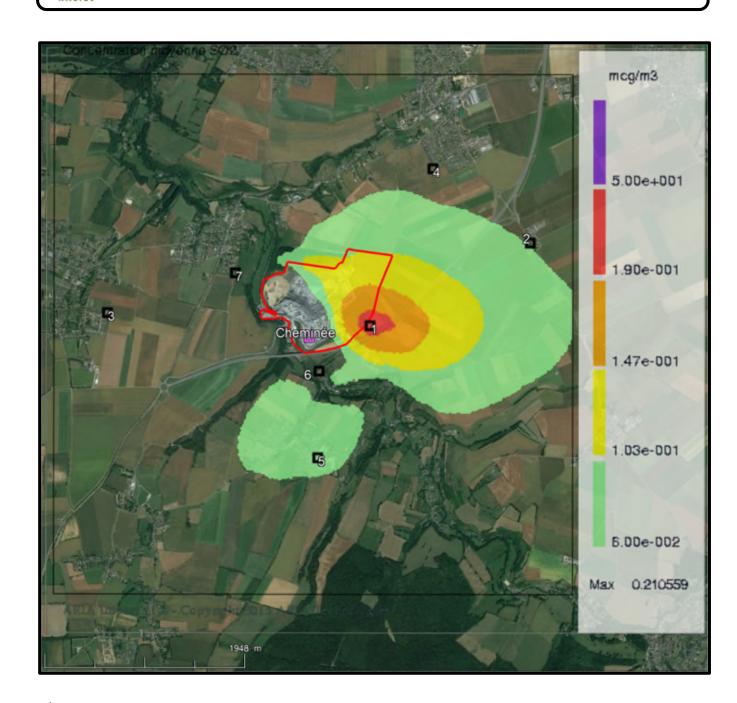

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Poussières 2,5 - CMA - $\mu g/m^3$

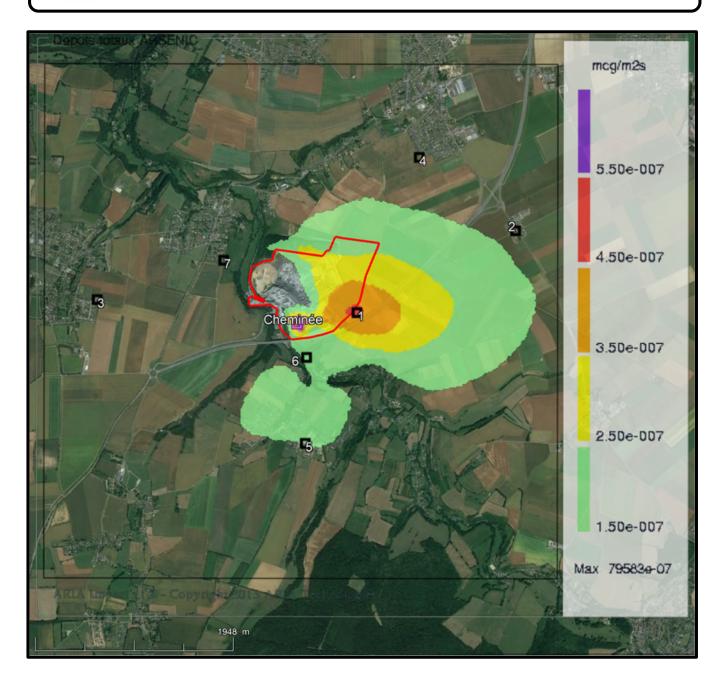

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Antimoine - CMA - μg/m³

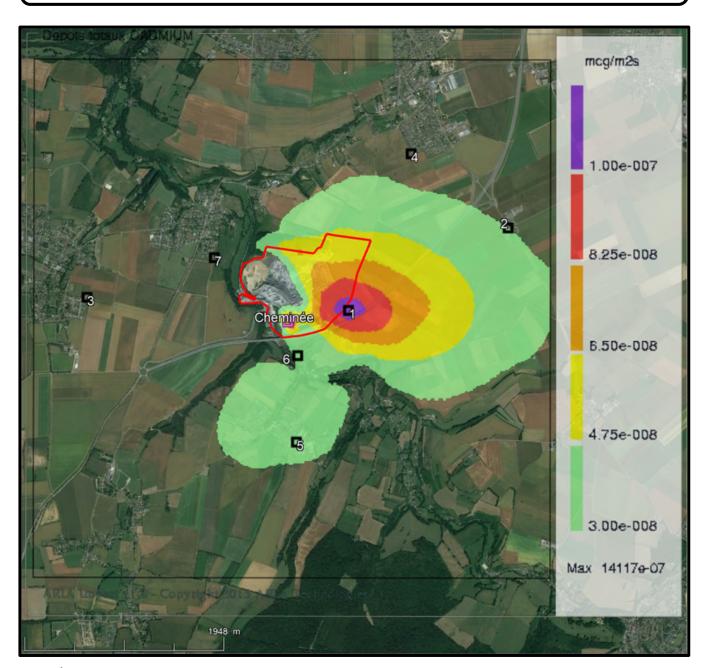
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


Sélénium - CMA - μ g/m³

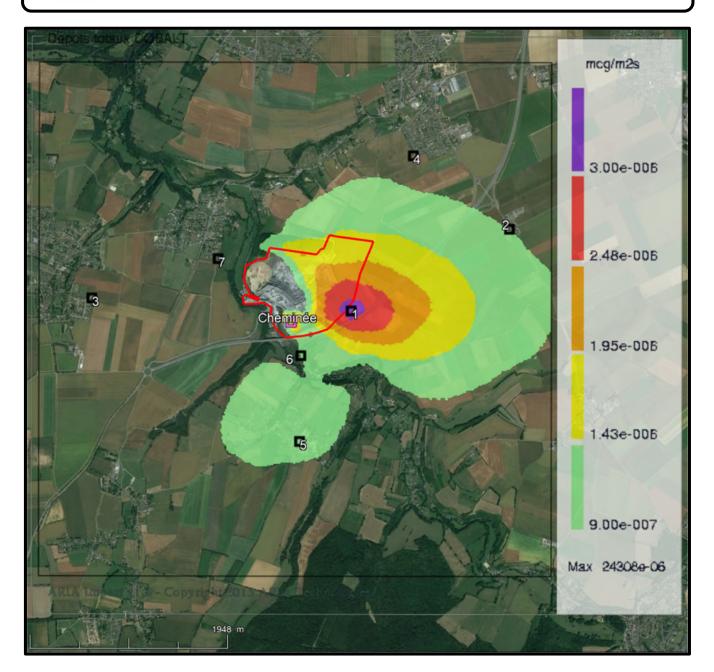
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


KALIÈS

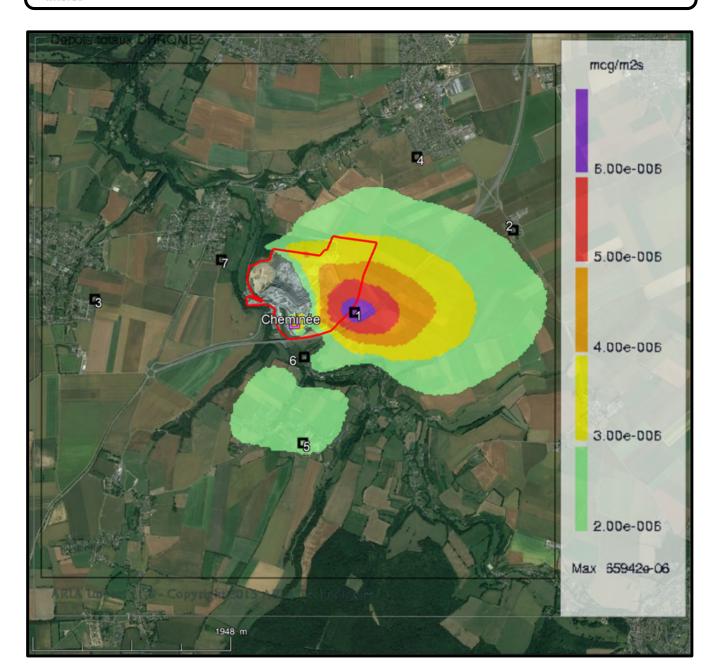
Dioxyde de soufre - CMA - $\mu g/m^3$


- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

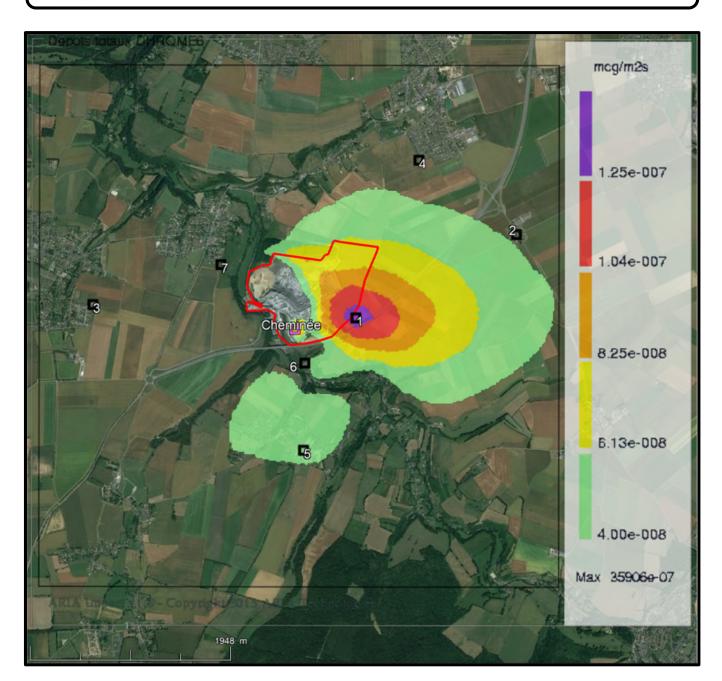
Arsenic - DÉPÔTS TOTAUX - μg/m²s


- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

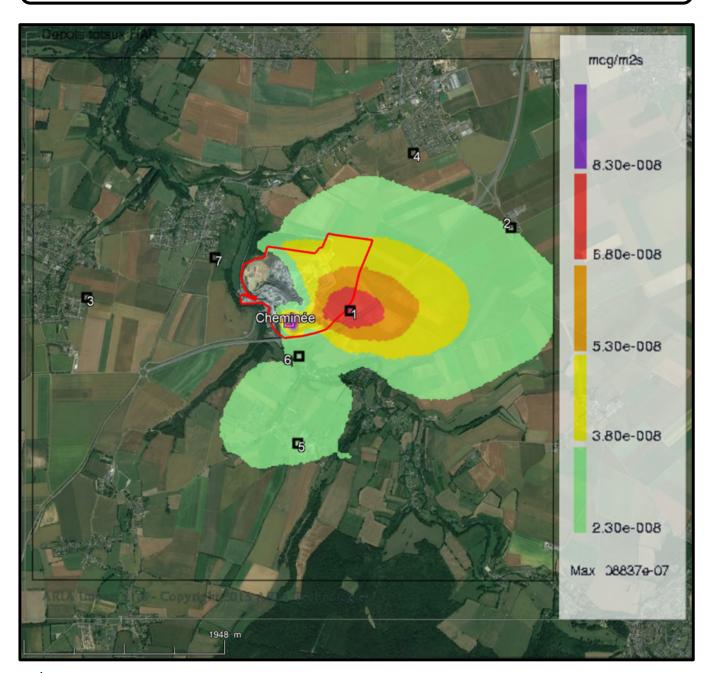
Cadmium - DÉPÔTS TOTAUX - μg/m²s


- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Cobalt - DÉPÔTS TOTAUX - μg/m²s

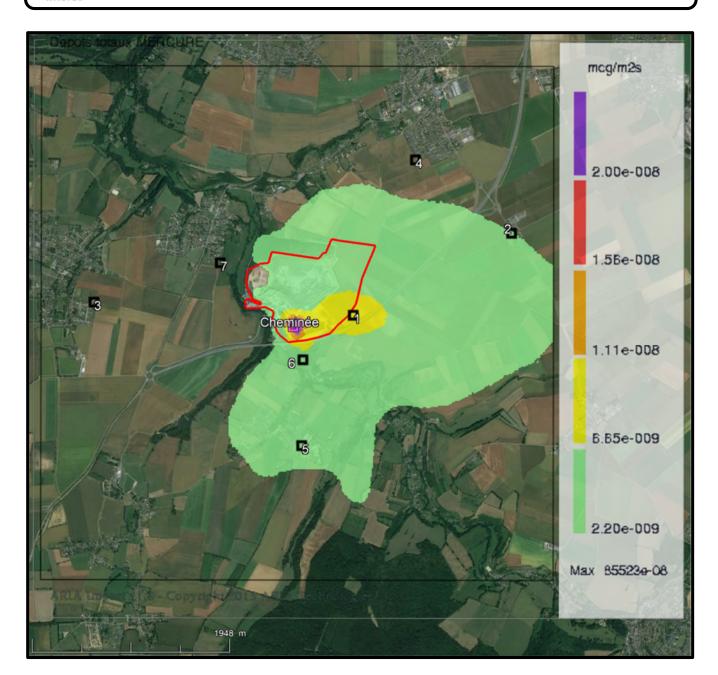

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Chrome III - DÉPÔTS TOTAUX - µg/m²s

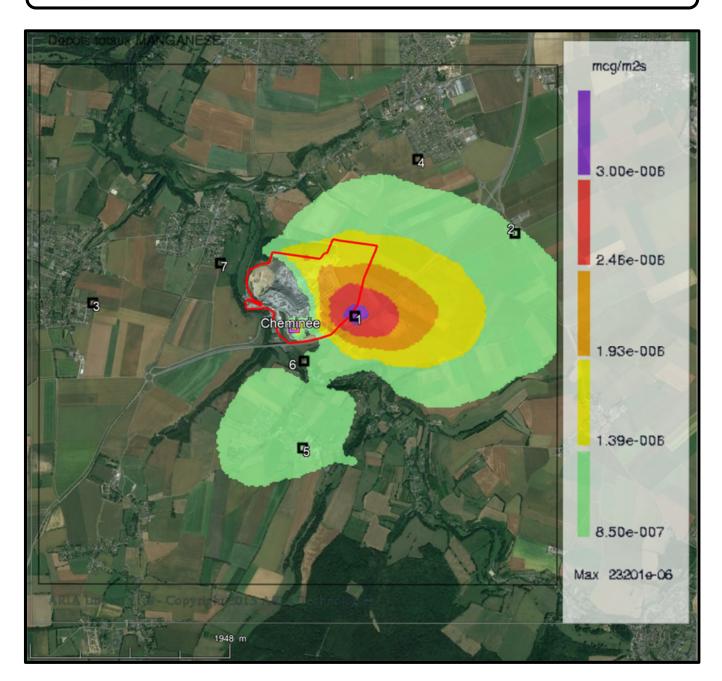

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Chrome VI - DÉPÔTS TOTAUX - µg/m²s

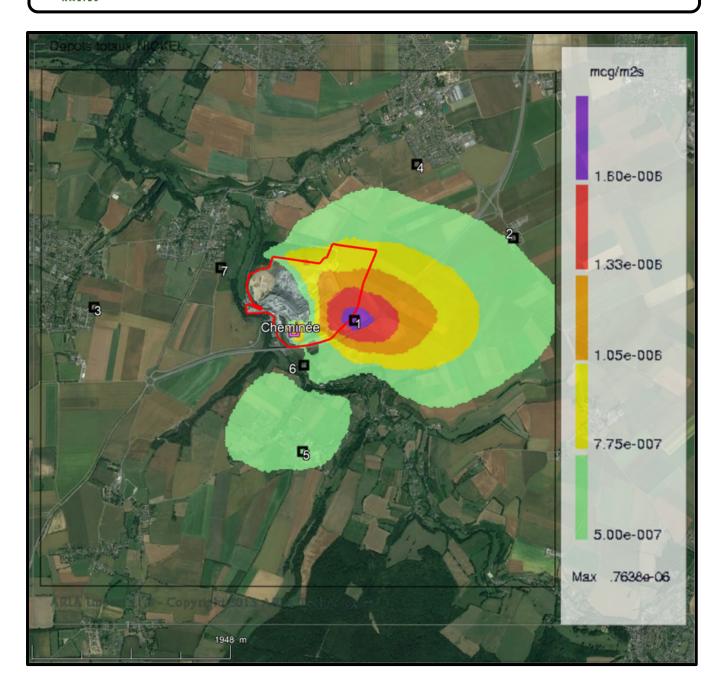
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


HAP - DÉPÔTS TOTAUX - μg/m²s

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

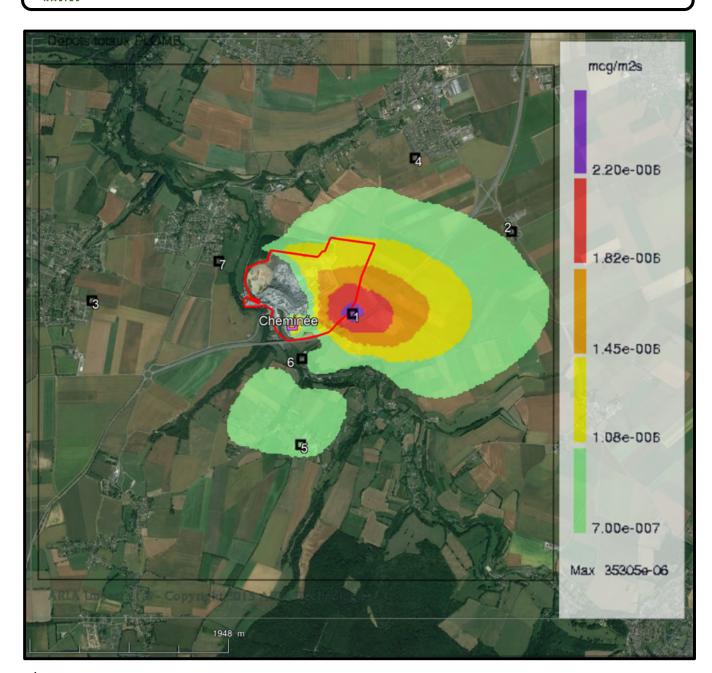

KALIÈ

Mercure - DÉPÔTS TOTAUX - μg/m²s

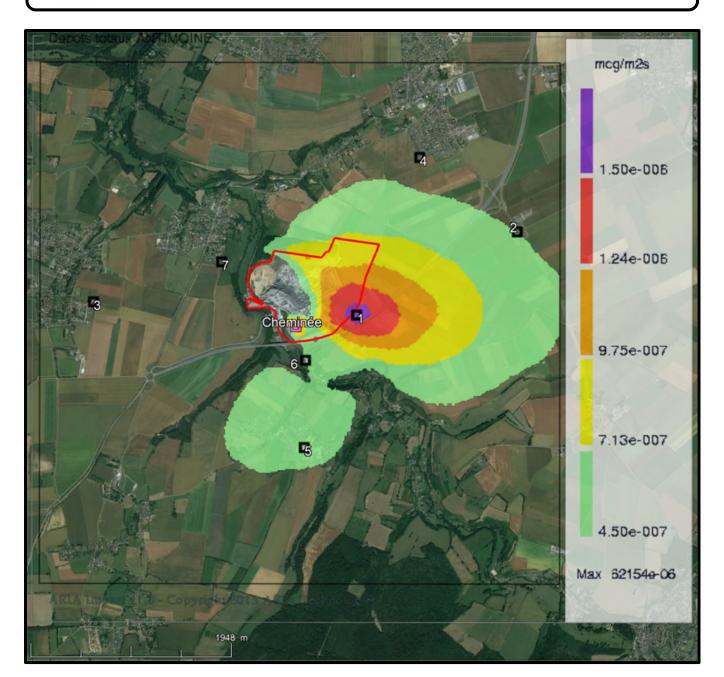

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Manganèse - DÉPÔTS TOTAUX - μg/m²s

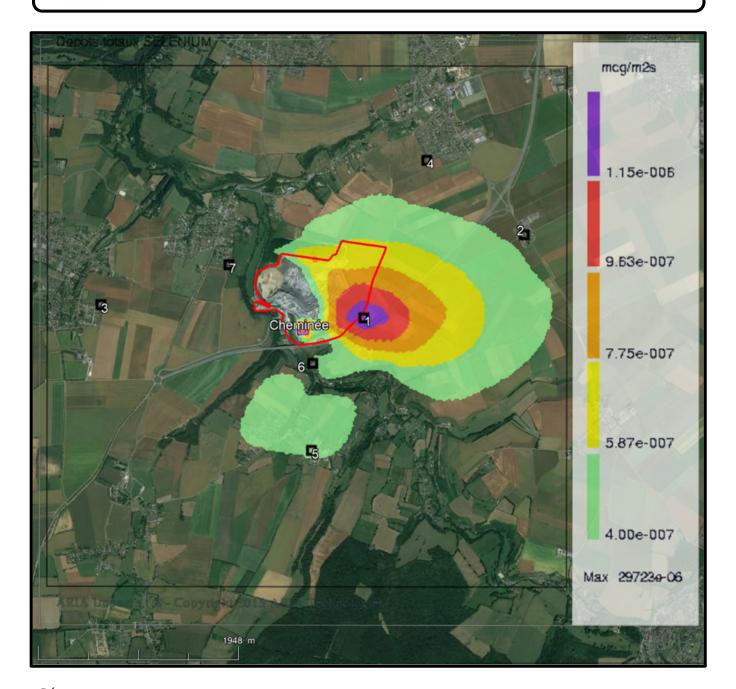
- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


Nickel - DÉPÔTS TOTAUX - μg/m²s

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville


KALIÈS

Plomb - DÉPÔTS TOTAUX - μg/m²s


- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Antimoine - DÉPÔTS TOTAUX - μg/m²s

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville

Sélénium - DÉPÔTS TOTAUX - μg/m²s

- 1- Zone de retombées maximales
- 2- Les Cinq Fermes
- 3- Clinchamps-sur-Orne
- 4- Fontenay-le-Marmion
- 5- FRESNEY-LE-PUCEUX
- 6- Le Pont de Fresney
- 7- Laize-la-Ville